Enderton (logic). 1.2.6-1.2.9.
parent
0cc0cce2b5
commit
c458eca8ae
|
@ -272,13 +272,13 @@
|
||||||
By definition of a construction sequence, one of the following holds:
|
By definition of a construction sequence, one of the following holds:
|
||||||
\begin{align}
|
\begin{align}
|
||||||
& \phi \text{ is a sentence symbol}
|
& \phi \text{ is a sentence symbol}
|
||||||
& \label{sub:induction-principle-1-eq1} \\
|
& \hyperlabel{sub:induction-principle-1-eq1} \\
|
||||||
& \phi = \mathcal{E}_\neg(\epsilon_j)
|
& \phi = \mathcal{E}_\neg(\epsilon_j)
|
||||||
\text{ for some } j < m + 1
|
\text{ for some } j < m + 1
|
||||||
& \label{sub:induction-principle-1-eq2} \\
|
& \hyperlabel{sub:induction-principle-1-eq2} \\
|
||||||
& \phi = \mathcal{E}_\square(\epsilon_j, \epsilon_k)
|
& \phi = \mathcal{E}_\square(\epsilon_j, \epsilon_k)
|
||||||
\text{ for some } j < m + 1, k < m + 1
|
\text{ for some } j < m + 1, k < m + 1
|
||||||
& \label{sub:induction-principle-1-eq3}
|
& \hyperlabel{sub:induction-principle-1-eq3}
|
||||||
\end{align}
|
\end{align}
|
||||||
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
||||||
$\Rightarrow$, $\Leftrightarrow$.
|
$\Rightarrow$, $\Leftrightarrow$.
|
||||||
|
@ -1300,7 +1300,7 @@
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.6b}}%
|
\subsection{\unverified{Exercise 1.2.6b}}%
|
||||||
\hyperlabel{sub:exercise-1.2.6b}
|
\hyperlabel{sub:exercise-1.2.6b}
|
||||||
|
|
||||||
Let $\mathcal{S}$ be a set of sentence symbols that includes those in $\Sigma$
|
Let $\mathcal{S}$ be a set of sentence symbols that includes those in $\Sigma$
|
||||||
|
@ -1315,10 +1315,32 @@
|
||||||
are a great many -- uncountably many -- of them.)
|
are a great many -- uncountably many -- of them.)
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Let $\mathcal{S}$ be a set of sentence symbols that includes those in
|
||||||
|
$\Sigma$ and $\tau$ (and possibly more).
|
||||||
|
Let $\mathcal{S}' \subseteq \mathcal{S}$ be the set containing precisely
|
||||||
|
the sentence symbols found in $\Sigma$ and $\tau$.
|
||||||
|
|
||||||
|
Let $v$ be a truth assignment for $S'$ that satisfies every member of
|
||||||
|
$\Sigma$ and $w$ be an arbitrary extension of $v$ for $S$.
|
||||||
|
By construction, $v$ and $w$ agree on all the sentence symbols found in both
|
||||||
|
$\Sigma$ and $\tau$.
|
||||||
|
\nameref{sub:exercise-1.2.6a} then implies $\bar{v}(\tau) = \bar{w}(\tau)$
|
||||||
|
and $\bar{v}(\sigma) = \bar{w}(\sigma)$ for all $\sigma \in \Sigma$.
|
||||||
|
Thus $v$ satisfies every member of $\Sigma$ if and only if $w$ satisfies
|
||||||
|
every member of $\Sigma$.
|
||||||
|
Likewise, $v$ satisfies $\tau$ if and only if $w$ satisfies $\tau$.
|
||||||
|
|
||||||
|
Hence, by definition of \nameref{ref:tautological-implication},
|
||||||
|
$\Sigma \vDash \tau$ if and only if every truth assignment for the
|
||||||
|
sentence symbols in $S'$ that satisfies every member of $\Sigma$ also
|
||||||
|
satisfies $\tau$ if and only if every truth assignment for the sentence
|
||||||
|
symbols in $S$ that satisfies every member of $\Sigma$ also satisfies
|
||||||
|
$\tau$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.7}}%
|
\subsection{\unverified{Exercise 1.2.7}}%
|
||||||
\hyperlabel{sub:exercise-1.2.7}
|
\hyperlabel{sub:exercise-1.2.7}
|
||||||
|
|
||||||
You are in a land inhabited by people who either always tell the truth or
|
You are in a land inhabited by people who either always tell the truth or
|
||||||
|
@ -1331,29 +1353,103 @@
|
||||||
\textit{Suggestion}: Make a table.
|
\textit{Suggestion}: Make a table.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
Consider the self-referential question,
|
||||||
|
"Would you respond 'yes' to the question,
|
||||||
|
'Should I take the left road to get to the capital?'"
|
||||||
|
Let $I$ denote whether the inhabitant is truthful, and $L$ denote whether
|
||||||
|
the left road actually goes to the capital.
|
||||||
|
We have $R$ denote the answer given by the inhabitant in the following
|
||||||
|
"truth table":
|
||||||
|
$$\begin{array}{s|s|e}
|
||||||
|
I & L & R \\
|
||||||
|
\hline
|
||||||
|
T & T & \text{Yes} \\
|
||||||
|
T & F & \text{No} \\
|
||||||
|
F & T & \text{Yes} \\
|
||||||
|
F & F & \text{No}
|
||||||
|
\end{array}$$
|
||||||
|
Regardless of the inhabitant's honesty, we receive the answer "Yes" if and
|
||||||
|
only if the left road actually goes to the capital.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.8}}%
|
\subsection{\unverified{Exercise 1.2.8}}%
|
||||||
\hyperlabel{sub:exercise-1.2.8}
|
\hyperlabel{sub:exercise-1.2.8}
|
||||||
|
|
||||||
(Substitution) Consider a suquence $\alpha_1, \alpha_2, \ldots$ of wffs.
|
(Substitution) Consider a sequence $\alpha_1, \alpha_2, \ldots$ of wffs.
|
||||||
For each wff $\phi$ let $\phi^*$ be the result of replacing the sentence
|
For each wff $\phi$ let $\phi^*$ be the result of replacing the sentence
|
||||||
symbol $A_n$ by $\alpha_n$ for each $n$.
|
symbol $A_n$ by $\alpha_n$ for each $n$.
|
||||||
|
|
||||||
\subsubsection{\sorry{Exercise 1.2.8a}}%
|
\subsubsection{\unverified{Exercise 1.2.8a}}%
|
||||||
\hyperlabel{ssub:exercise-1.2.8a}
|
\hyperlabel{ssub:exercise-1.2.8a}
|
||||||
|
|
||||||
Let $v$ be a truth assignment for the set of all sentence symbols; define $u$
|
Let $v$ be a truth assignment for the set of all sentence symbols; define $u$
|
||||||
to be the truth assignment for which $u(A_n) = \bar{v}(\alpha_n)$.
|
to be the truth assignment for which $u(A_n) = \bar{v}(\alpha_n)$.
|
||||||
Show that $\bar{u}(\phi) = \bar{v}(\phi^*)$.
|
Show that $\bar{u}(\phi) = \bar{v}(\phi^*)$.
|
||||||
Use the induction principle.
|
Use the \nameref{sub:induction-principle-1}.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Let $$S = \{\phi \mid
|
||||||
|
\phi \text{ is a wff such that } \bar{u}(\phi) = \bar{v}(\phi^*)\}.$$
|
||||||
|
We prove that (i) $S$ contains the set of all sentence symbols and (ii) $S$
|
||||||
|
is closed under the five \nameref{ref:formula-building-operations}.
|
||||||
|
Afterward we prove that (iii) our theorem statement holds.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
\hyperlabel{par:exercise-1.2.8-i}
|
||||||
|
|
||||||
|
Let $\phi = A_n$ be an arbitrary sentence symbol.
|
||||||
|
By definition, $u(A_n) = \bar{v}(\alpha_n)$.
|
||||||
|
Then $$\bar{u}(\phi)
|
||||||
|
= \bar{u}(A_n) \\
|
||||||
|
= u(A_n) \\
|
||||||
|
= \bar{v}(\alpha_n) \\
|
||||||
|
= \bar{v}(\phi^*).$$
|
||||||
|
Hence every sentence symbol is in $S$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
\hyperlabel{par:exercise-1.2.8-ii}
|
||||||
|
|
||||||
|
Let $\beta, \gamma \in S$.
|
||||||
|
That is, $\bar{u}(\beta) = \bar{v}(\beta^*)$ and
|
||||||
|
$\bar{u}(\gamma) = \bar{v}(\gamma^*)$.
|
||||||
|
By definition, $\mathcal{E}_{\neg}(\beta) = (\neg\beta)$.
|
||||||
|
Therefore
|
||||||
|
\begin{align*}
|
||||||
|
\bar{u}(\mathcal{E}_{\neg}(\beta))
|
||||||
|
& = (\neg\bar{u}(\beta)) \\
|
||||||
|
& = (\neg\bar{v}(\beta^*)) \\
|
||||||
|
& = \bar{v}((\neg\beta^*)) \\
|
||||||
|
& = \bar{v}((\neg\beta)^*) \\
|
||||||
|
& = \bar{v}(\mathcal{E}_{\neg}(\beta)^*).
|
||||||
|
\end{align*}
|
||||||
|
Likewise,
|
||||||
|
$\mathcal{E}_{\square}(\beta, \gamma) =
|
||||||
|
(\beta \mathop{\square} \gamma)$
|
||||||
|
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
||||||
|
$\Rightarrow$, $\Leftrightarrow$.
|
||||||
|
Therefore
|
||||||
|
\begin{align*}
|
||||||
|
\bar{u}(\mathcal{E}_{\square}(\beta, \gamma))
|
||||||
|
& = \bar{u}(\beta) \mathop{\square} \bar{u}(\gamma) \\
|
||||||
|
& = \bar{v}(\beta^*) \mathop{\square} \bar{v}(\gamma^*) \\
|
||||||
|
& = \bar{v}((\beta^* \mathop{\square} \gamma^*)) \\
|
||||||
|
& = \bar{v}((\beta \mathop{\square} \gamma)^*) \\
|
||||||
|
& = \bar{v}(\mathcal{E}_{\square}(\beta, \gamma)^*).
|
||||||
|
\end{align*}
|
||||||
|
Hence $S$ is closed under the five formula-building operations.
|
||||||
|
|
||||||
|
\paragraph{(iii)}%
|
||||||
|
|
||||||
|
By \nameref{par:exercise-1.2.8-i} and \nameref{par:exercise-1.2.8-ii},
|
||||||
|
the \nameref{sub:induction-principle-1} implies $S$ is the set of all
|
||||||
|
wffs.
|
||||||
|
Thus for any well-formed formula $\phi$,
|
||||||
|
$\bar{u}(\phi) = \bar{v}(\phi^*)$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsubsection{\sorry{Exercise 1.2.8b}}%
|
\subsubsection{\unverified{Exercise 1.2.8b}}%
|
||||||
\hyperlabel{ssub:exercise-1.2.8b}
|
\hyperlabel{ssub:exercise-1.2.8b}
|
||||||
|
|
||||||
Show that if $\phi$ is a tautology, then so is $\phi^*$.
|
Show that if $\phi$ is a tautology, then so is $\phi^*$.
|
||||||
|
@ -1364,21 +1460,130 @@
|
||||||
tautology, for any wffs $\alpha$ and $\beta$.)
|
tautology, for any wffs $\alpha$ and $\beta$.)
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
Suppose $\phi$ is a tautology and let $S$ be the set of all sentence
|
||||||
|
symbols.
|
||||||
|
Let $v$ be a truth assignment for $S$ and define $u$ to be the truth
|
||||||
|
assignment for which $u(A_n) = \bar{v}(\alpha_n)$.
|
||||||
|
By \nameref{ssub:exercise-1.2.8a}, $\bar{u}(\phi) = \bar{v}(\phi^*)$.
|
||||||
|
Since $\phi$ is a tautology, $\bar{u}(\phi)$ is true meaning
|
||||||
|
$\bar{v}(\phi^*)$ is also true.
|
||||||
|
Since $v$ is an arbitrary truth assignment, it follows that every truth
|
||||||
|
assignment for $S$ satisfies $\phi^*$.
|
||||||
|
By \nameref{sub:exercise-1.2.6b}, $\vDash \phi^*$, i.e. $\phi^*$ is a
|
||||||
|
tautology.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.9}}%
|
\subsection{\unverified{Exercise 1.2.9}}%
|
||||||
\hyperlabel{sub:exercise-1.2.9}
|
\hyperlabel{sub:exercise-1.2.9}
|
||||||
|
|
||||||
(Duality) Let $\alpha$ be a wff whose only connective symbols are $\land$,
|
(Duality) Let $\alpha$ be a wff whose only connective symbols are $\land$,
|
||||||
$\lor$, and $\neg$.
|
$\lor$, and $\neg$.
|
||||||
Let $\alpha^*$ be the result of interchanging $\land$ and $\lor$ and replacing
|
Let $\alpha^*$ be the result of interchanging $\land$ and $\lor$ and replacing
|
||||||
each sentence symbol by its negation.
|
each sentence symbol by its negation.
|
||||||
Show that $\alpha^*$ is tautologically equivalent to $(\neg \alpha)$.
|
Show that $\alpha^*$ is tautologically equivalent to $(\neg\alpha)$.
|
||||||
Use the \nameref{sub:induction-principle-1}.
|
Use the \nameref{sub:induction-principle-1}.
|
||||||
|
|
||||||
|
\code*{Common/Logic/Basic}
|
||||||
|
{not\_and\_de\_morgan}
|
||||||
|
|
||||||
|
\code{Common/Logic/Basic}
|
||||||
|
{not\_or\_de\_morgan}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Let
|
||||||
|
\begin{align*}
|
||||||
|
S = \{ \alpha \mid
|
||||||
|
& \alpha \text{ is a wff containing a } \Rightarrow \text{ or } \\
|
||||||
|
& \alpha \text{ is a wff containing a } \Leftrightarrow \text{ or } \\
|
||||||
|
& \alpha^* \vDash \Dashv (\neg\alpha) \}.
|
||||||
|
\end{align*}
|
||||||
|
We prove that (i) $S$ contains the set of all sentence symbols and (ii) $S$
|
||||||
|
is closed under the five \nameref{ref:formula-building-operations}.
|
||||||
|
Afterward we prove that (iii) our theorem statement holds.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
\hyperlabel{par:exercise-1.2.9-i}
|
||||||
|
|
||||||
|
Let $\alpha = A_n$ be an arbitrary sentence symbol.
|
||||||
|
By definition, $$\alpha^* = A_n^* = (\neg A_n) = (\neg\alpha).$$
|
||||||
|
Hence every sentence symbol is in $S$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
\hyperlabel{par:exercise-1.2.9-ii}
|
||||||
|
|
||||||
|
Let $\alpha, \beta \in S$.
|
||||||
|
Suppose $\alpha$ contains a $\Rightarrow$ or $\Leftrightarrow$ symbol.
|
||||||
|
Then $\mathcal{E}_{\neg}(\alpha)$ also does.
|
||||||
|
The same holds for $\beta$.
|
||||||
|
Furthermore, if either $\alpha$ or $\beta$ contains a $\Rightarrow$ or
|
||||||
|
$\Leftrightarrow$ symbol, then so does
|
||||||
|
$\mathcal{E}_{\square}(\alpha, \beta)$
|
||||||
|
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
||||||
|
$\Rightarrow$, $\Leftrightarrow$.
|
||||||
|
In any of these above cases, it is trivial to see each of the five-formula
|
||||||
|
building operations take a wff from $S$ and produce another wff in $S$.
|
||||||
|
|
||||||
|
Now, suppose neither $\alpha$ nor $\beta$ contain a $\Rightarrow$ or
|
||||||
|
$\Leftrightarrow$ symbol.
|
||||||
|
Then it must be that $\alpha^* \vDash\Dashv (\neg\alpha)$ and
|
||||||
|
$\beta^* \vDash\Dashv (\neg\beta)$.
|
||||||
|
Consider first $\mathcal{E}_{\neg}(\alpha) = (\neg\alpha)$.
|
||||||
|
By definition,
|
||||||
|
$$\mathcal{E}_{\neg}(\alpha)^*
|
||||||
|
= (\neg\alpha^*)
|
||||||
|
\vDash\Dashv (\neg(\neg\alpha))
|
||||||
|
= (\neg(\mathcal{E}_{\neg}(\alpha))).$$
|
||||||
|
Therefore $\mathcal{E}_{\neg}(\alpha) \in S$.
|
||||||
|
|
||||||
|
Likewise, consider $\mathcal{E}_{\square}(\alpha, \beta)$ where $\square$
|
||||||
|
is one of the binary connectives $\land$, $\lor$, $\Rightarrow$,
|
||||||
|
$\Leftrightarrow$.
|
||||||
|
It trivially follows that $\mathcal{E}_{\Rightarrow}(\alpha, \beta) \in S$
|
||||||
|
and $\mathcal{E}_{\Leftrightarrow}(\alpha, \beta) \in S$.
|
||||||
|
We cover the remaining two cases in turn:
|
||||||
|
|
||||||
|
\subparagraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $\square = \land$.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
\mathcal{E}_{\land}(\alpha, \beta)^*
|
||||||
|
& = (\alpha \land \beta)^* \\
|
||||||
|
& = (\alpha^* \lor \beta^*) \\
|
||||||
|
& \vDash\Dashv ((\neg\alpha) \lor (\neg\beta)) \\
|
||||||
|
& \vDash\Dashv \neg(\alpha \land \beta) \\
|
||||||
|
& = (\neg(\mathcal{E}_{\land}(\alpha, \beta))),
|
||||||
|
\end{align*}
|
||||||
|
where the last tautological equivalence follows from De Morgan's laws.
|
||||||
|
|
||||||
|
\subparagraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $\square = \lor$.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
\mathcal{E}_{\lor}(\alpha, \beta)^*
|
||||||
|
& = (\alpha \lor \beta)^* \\
|
||||||
|
& = (\alpha^* \land \beta^*) \\
|
||||||
|
& \vDash\Dashv ((\neg\alpha) \land (\neg\beta)) \\
|
||||||
|
& \vDash\Dashv \neg(\alpha \lor \beta) \\
|
||||||
|
& = (\neg(\mathcal{E}_{\lor}(\alpha, \beta))),
|
||||||
|
\end{align*}
|
||||||
|
where the last tautological equivalence follows from De Morgan's laws.
|
||||||
|
|
||||||
|
\subparagraph{Subconclusion}%
|
||||||
|
|
||||||
|
The foregoing analysis shows that $S$ is indeed closed under the five
|
||||||
|
formula-building operations.
|
||||||
|
|
||||||
|
\paragraph{(iii)}%
|
||||||
|
|
||||||
|
By \nameref{par:exercise-1.2.9-i} and \nameref{par:exercise-1.2.9-ii},
|
||||||
|
the \nameref{sub:induction-principle-1} implies $S$ is the set of all
|
||||||
|
wffs.
|
||||||
|
Thus for any well-formed formula $\alpha$ whose only connective symbols
|
||||||
|
are $\land$, $\lor$, and $\neg$, $\alpha^* \vDash\Dashv (\neg\alpha)$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.10}}%
|
\subsection{\sorry{Exercise 1.2.10}}%
|
||||||
|
|
Loading…
Reference in New Issue