Drop placeholders prior to Mathlib4 port.
parent
526a11a3f6
commit
c3b579aed1
|
@ -1,4 +1,3 @@
|
|||
import Common.Finset
|
||||
import Common.List
|
||||
import Common.Logic
|
||||
import Common.Real
|
||||
|
|
|
@ -1,17 +0,0 @@
|
|||
import Mathlib.Data.Finset.Basic
|
||||
|
||||
/-! # Common.Finset
|
||||
|
||||
Additional theorems and definitions useful in the context of `Finset`s.
|
||||
-/
|
||||
|
||||
namespace Finset
|
||||
|
||||
/--
|
||||
An alternative `Finset.range` function that returns `Fin` indices instead of `ℕ`
|
||||
indices.
|
||||
-/
|
||||
def finRange (n : ℕ) : Finset (Fin n) :=
|
||||
⟨sorry, sorry⟩
|
||||
|
||||
end Finset
|
|
@ -1,4 +1,3 @@
|
|||
import Common.Finset
|
||||
import Common.Geometry.Rectangle.Orthogonal
|
||||
import Common.List.Basic
|
||||
import Common.List.NonEmpty
|
||||
|
@ -73,19 +72,7 @@ namespace StepFunction
|
|||
/--
|
||||
The ordinate set of the `StepFunction`.
|
||||
-/
|
||||
def toSet (sf : StepFunction) : Set Point :=
|
||||
⋃ i ∈ Finset.finRange sf.ivls.length,
|
||||
let I := sf.ivls[i]
|
||||
Rectangle.Orthogonal.toSet
|
||||
⟨
|
||||
{
|
||||
tl := ⟨I.left, sf.toFun i⟩,
|
||||
bl := ⟨I.left, 0⟩,
|
||||
br := ⟨I.right, 0⟩,
|
||||
has_right_angle := sorry
|
||||
},
|
||||
by simp
|
||||
⟩
|
||||
def toSet (sf : StepFunction) : Set Point := sorry
|
||||
|
||||
end StepFunction
|
||||
|
||||
|
|
|
@ -1,4 +1,2 @@
|
|||
import Common.Real.Floor
|
||||
import Common.Real.Rational
|
||||
import Common.Real.Sequence
|
||||
import Common.Real.Trigonometry
|
|
@ -1,18 +0,0 @@
|
|||
import Mathlib.Data.Real.Basic
|
||||
|
||||
/-! # Common.Real.Rational
|
||||
|
||||
Additional theorems and definitions useful in the context of rational numbers.
|
||||
Most of these will likely be deleted once the corresponding functions in
|
||||
`Mathlib` are ported to Lean 4.
|
||||
-/
|
||||
|
||||
/--
|
||||
Assert that a real number is irrational.
|
||||
-/
|
||||
def irrational (x : ℝ) := x ∉ Set.range RatCast.ratCast
|
||||
|
||||
/--
|
||||
Assert that a real number is rational.
|
||||
-/
|
||||
def rational (x : ℝ) := ¬ irrational x
|
|
@ -1,26 +0,0 @@
|
|||
import Mathlib.Data.Real.Basic
|
||||
|
||||
/-! # Common.Real.Trigonometry
|
||||
|
||||
Additional theorems and definitions useful in the context of trigonometry. Most
|
||||
of these will likely be deleted once the corresponding functions in `Mathlib`
|
||||
are ported to Lean 4.
|
||||
-/
|
||||
|
||||
namespace Real
|
||||
|
||||
/--
|
||||
The standard `π` variable with value `3.14159...`.
|
||||
-/
|
||||
axiom pi : ℝ
|
||||
|
||||
/--
|
||||
The undirected angle at `p₂` between the line segments to `p₁` and `p₃`. If
|
||||
either of those points equals `p₂`, this is `π / 2`.
|
||||
-/
|
||||
axiom angle (p₁ p₂ p₃ : ℝ × ℝ) : ℝ
|
||||
|
||||
noncomputable def euclideanAngle (p₁ p₂ p₃ : ℝ × ℝ) :=
|
||||
if p₁ = p₂ ∨ p₂ = p₃ then pi / 2 else angle p₁ p₂ p₃
|
||||
|
||||
end Real
|
Loading…
Reference in New Issue