Enderton, add prompts to be proven from "Axioms and Operations."
parent
88022b723c
commit
bf3358629e
|
@ -924,7 +924,7 @@ Prove that every triangular region is measurable and that its area is one half
|
|||
As an example, consider the image below of triangle $T$ with width $4$ and
|
||||
height $3$:
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}[ht]
|
||||
\includegraphics{right-triangle}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
@ -962,7 +962,7 @@ Prove that every trapezoid and every parallelogram is measurable and derive the
|
|||
Let $S$ be a trapezoid with height $h$ and bases $b_1$ and $b_2$, $b_1 < b_2$.
|
||||
There are three cases to consider:
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{figure}[ht]
|
||||
\includegraphics[width=\textwidth]{trapezoid-cases}
|
||||
\centering
|
||||
\end{figure}
|
||||
|
@ -1362,7 +1362,7 @@ $\floor{-x} =
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\ \vspace{6pt}
|
||||
\statementpadding
|
||||
|
||||
\lean*{Bookshelf/Apostol/Chapter\_1\_11}
|
||||
{Apostol.Chapter\_1\_11.exercise\_4b\_1}
|
||||
|
|
|
@ -50,7 +50,7 @@ For any sets $u$ and $v$, the \textbf{pair set $\{u, v\}$} is the set whose
|
|||
|
||||
\begin{definition}
|
||||
|
||||
\ % Add space
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Init/Set}{Set.insert}
|
||||
|
||||
|
@ -67,7 +67,7 @@ For any sets $u$ and $v$, there is a set having as members just $u$ and $v$:
|
|||
|
||||
\begin{axiom}
|
||||
|
||||
\ % Add space
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Init/Set}{Set.insert}
|
||||
|
||||
|
@ -448,22 +448,31 @@ List all the members of $V_4$.
|
|||
\section{Axioms}%
|
||||
\label{sec:axioms}
|
||||
|
||||
\subsection{\unverified{Theorem 2A}}%
|
||||
\subsection{\partial{Theorem 2A}}%
|
||||
\label{sub:theorem-2a}
|
||||
|
||||
\begin{theorem}[2A]
|
||||
|
||||
There is no set to which every set belongs.
|
||||
|
||||
\note{This was revisited after reading Enderton's proof prior.}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
Let $A$ be an arbitrary set.
|
||||
Define $B = \{ x \in A \mid x \not\in x \}$.
|
||||
By the \nameref{ref:subset-axioms}, $B$ is a set.
|
||||
Then $$B \in B \iff B \in A \land B \not\in B.$$
|
||||
If $B \in A$, then $B \in B \iff B \not\in B$, a contradiction.
|
||||
Thus $B \not\in A$.
|
||||
Since this process holds for any set $A$, there must exist no set to which
|
||||
every set belongs.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 2B}}%
|
||||
\subsection{\partial{Theorem 2B}}%
|
||||
\label{sub:theorem-2b}
|
||||
|
||||
\begin{theorem}[2B]
|
||||
|
@ -475,7 +484,16 @@ List all the members of $V_4$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
Suppose $A$ is a nonempty set.
|
||||
This ensures the statement we are trying to prove does not vacuously hold for
|
||||
all sets $x$ (which would yield a contradiction due to
|
||||
\nameref{sub:theorem-2b}).
|
||||
By the \nameref{ref:union-axiom}, $\bigcup A$ is a set.
|
||||
Define $$B = \{ x \in \bigcup A \mid (\forall b \in A), x \in b \}.$$
|
||||
By the \nameref{ref:subset-axioms}, $B$ is indeed a set.
|
||||
By construction,
|
||||
$$\forall x, x \in B \iff x \text{ belongs to every member of } A.$$
|
||||
By the \nameref{ref:extensionality-axiom}, $B$ is unique.
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -721,7 +739,7 @@ Under what conditions does equality hold?
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\ % Add space.
|
||||
\statementpadding
|
||||
|
||||
\lean*{Bookshelf/Enderton/Set/Chapter\_1}
|
||||
{Enderton.Set.Chapter\_1.exercise\_3\_7b\_i}
|
||||
|
@ -853,4 +871,404 @@ Show that if $a \in B$, then $\powerset{a} \in \powerset{\powerset{\bigcup B}}$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section{Algebra of Sets}%
|
||||
\label{sec:algebra-sets}
|
||||
|
||||
\subsection{\verified{Commutative Laws}}%
|
||||
\label{sub:commutative-laws}
|
||||
|
||||
For any sets $A$ and $B$,
|
||||
\begin{align*}
|
||||
A \cup B = B \cup A \\
|
||||
A \cap B = B \cap A
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.union\_comm}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.inter\_comm}
|
||||
|
||||
Let $A$ and $B$ be sets.
|
||||
We show (i) $A \cup B = B \cup A$ and then (ii) $A \cap B = B \cap A$.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By the definition of the union of sets,
|
||||
$A \cup B = \{ x \mid x \in A \lor x \in B \}$.
|
||||
Since $\lor$ is commutative, it follows
|
||||
\begin{align*}
|
||||
A \cup B
|
||||
& = \{ x \mid x \in A \lor x \in B \} \\
|
||||
& = \{ x \mid x \in B \lor x \in A \} \\
|
||||
& = B \cup A,
|
||||
\end{align*}
|
||||
where the last equality follows again from the definition of the union of
|
||||
sets.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By the definition of the intersection of sets,
|
||||
$A \cap B = \{ x \mid x \in A \land x \in B \}$.
|
||||
Since $\land$ is commutative, it follows
|
||||
\begin{align*}
|
||||
A \cap B
|
||||
& = \{ x \mid x \in A \land x \in B \} \\
|
||||
& = \{ x \mid x \in B \land x \in A \} \\
|
||||
& = B \land A,
|
||||
\end{align*}
|
||||
where the last equality follows again from the definition of the
|
||||
intersection of sets.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Associative Laws}}%
|
||||
\label{sub:associative-laws}
|
||||
|
||||
For any sets $A$, $B$ and $C$,
|
||||
\begin{align*}
|
||||
A \cup (B \cup C) & = (A \cup B) \cup C \\
|
||||
(A \cup B) \cup C & = A \cup (B \cup C)
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Distributive Laws}}%
|
||||
\label{sub:distributive-laws}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
\begin{align*}
|
||||
A \cap (B \cup C) & = (A \cap B) \cup (A \cap C) \\
|
||||
A \cup (B \cap C) & = (A \cup B) \cap (A \cup C)
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{De Morgan's Laws}}%
|
||||
\label{sub:de-morgans-laws}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
\begin{align*}
|
||||
C - (A \cup B) & = (C - A) \cap (C - B) \\
|
||||
C - (A \cap B) & = (C - A) \cup (C - B)
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{
|
||||
Identities Involving \texorpdfstring{$\emptyset$}{the Empty Set}}}%
|
||||
\label{sub:identitives-involving-empty-set}
|
||||
|
||||
For any set $A$,
|
||||
\begin{align*}
|
||||
A \cup \emptyset & = A \\
|
||||
A \cap \emptyset & = \emptyset \\
|
||||
A \cap (C - A) & = \emptyset
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Monotonicity}}%
|
||||
\label{sub:monotonicity}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
\begin{align*}
|
||||
A \subseteq B & \Rightarrow A \cup C \subseteq B \cup C \\
|
||||
A \subseteq B & \Rightarrow A \cap C \subseteq B \cap C \\
|
||||
A \subseteq B & \Rightarrow \bigcup A \subseteq \bigcup B
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Anti-monotonicity}}%
|
||||
\label{sub:anti-monotonicity}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
\begin{align*}
|
||||
A \subseteq B & \Rightarrow C - B \subseteq C - A \\
|
||||
\emptyset \neq A \subseteq B & \Rightarrow \bigcap B \subseteq \bigcap A.
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{General Distributive Laws}}%
|
||||
\label{sub:general-distributive-laws}
|
||||
|
||||
For any sets $A$ and $\mathscr{B}$,
|
||||
\begin{align*}
|
||||
A \cup \bigcap \mathscr{B} & =
|
||||
\bigcap\; \{ A \cup X \mid X \in \mathscr{B} \}
|
||||
\quad\text{for}\quad \mathscr{B} \neq \emptyset \\
|
||||
A \cap \bigcup \mathscr{B} & =
|
||||
\bigcup\; \{ A \cap X \mid X \in \mathscr{B} \}
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{General De Morgan's Laws}}%
|
||||
\label{sub:general-de-morgans-laws}
|
||||
|
||||
For any set $C$ and $\mathscr{A} \neq \emptyset$,
|
||||
\begin{align*}
|
||||
C - \bigcup \mathscr{A} & = \bigcap\; \{ C - X \mid X \in \mathscr{A} \} \\
|
||||
C - \bigcap \mathscr{A} & = \bigcup\; \{ C - X \mid X \in \mathscr{A} \}
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 4}%
|
||||
\label{sec:exercises-4}
|
||||
|
||||
\subsection{\unverified{Exercise 4.11}}%
|
||||
\label{sub:exercise-4.11}
|
||||
|
||||
Show that for any sets $A$ and $B$,
|
||||
$$A = (A \cap B) \cup (A - B) \quad\text{and}\quad
|
||||
A \cup (B - A) = A \cup B.$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.12}}%
|
||||
\label{sub:exercise-4.12}
|
||||
|
||||
Verify the following identity (one of De Morgan's laws):
|
||||
$$C - (A \cap B) = (C - A) \cup (C - B).$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.13}}%
|
||||
\label{sub:exercise-4.13}
|
||||
|
||||
Show that if $A \subseteq B$, then $C - B \subseteq C - A$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.14}}%
|
||||
\label{sub:exercise-4.14}
|
||||
|
||||
Show by example that for some sets $A$, $B$, and $C$, the set $A - (B - C)$ is
|
||||
different from $(A - B) - C$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.15}}%
|
||||
\label{sub:exercise-4.15}
|
||||
|
||||
Define the symmetric difference $A + B$ of sets $A$ and $B$ to be the set
|
||||
$(A - B) \cup (B - A)$.
|
||||
|
||||
\subsubsection{\unverified{Exercise 4.15a}}%
|
||||
\label{ssub:exercise-4.15a}
|
||||
|
||||
Show that $A \cap (B + C) = (A \cap B) + (A \cap C)$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\unverified{Exercise 4.15b}}%
|
||||
\label{ssub:exercise-4.15b}
|
||||
|
||||
Show that $A + (B + C) = (A + B) + C$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.16}}%
|
||||
\label{sub:exercise-4.16}
|
||||
|
||||
Simplify:
|
||||
$$[(A \cup B \cup C) \cap (A \cup B)] - [(A \cup (B - C)) \cap A].$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.17}}%
|
||||
\label{sub:exercise-4.17}
|
||||
|
||||
Show that the following four conditions are equivalent.
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item $A \subseteq B$,
|
||||
\item $A - B = \emptyset$,
|
||||
\item $A \cup B = B$,
|
||||
\item $A \cap B = A$.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.18}}%
|
||||
\label{sub:exercise-4.18}
|
||||
|
||||
Assume that $A$ and $B$ are subsets of $S$.
|
||||
List all of the different sets that can be made from these three by use of the
|
||||
binary operations $\cup$, $\cap$, and $-$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.19}}%
|
||||
\label{sub:exercise-4.19}
|
||||
|
||||
Is $\powerset{(A - B)}$ always equal to $\powerset{A} - \powerset{B}$?
|
||||
Is it ever equal to $\powerset{A} - \powerset{B}$?
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.20}}%
|
||||
\label{sub:exercise-4.20}
|
||||
|
||||
Let $A$, $B$, and $C$ be sets such that $A \cup B = A \cup C$ and
|
||||
$A \cap B = A \cap C$.
|
||||
Show that $B = C$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.21}}%
|
||||
\label{sub:exercise-4.21}
|
||||
|
||||
Show that $\bigcup (A \cup B) = \bigcup A \cup \bigcup B$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.22}}%
|
||||
\label{sub:exercise-4.22}
|
||||
|
||||
Show that if $A$ and $B$ are nonempty sets, then
|
||||
$\bigcap (A \cup B) = \bigcap A \cap \bigcap B$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.23}}%
|
||||
\label{sub:exercise-4.23}
|
||||
|
||||
Show that if $\mathscr{B}$ is nonempty, then
|
||||
$A \cup \bigcap \mathscr{B} = \bigcap\; \{A \cup X \mid X \in \mathscr{B} \}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.24a}}%
|
||||
\label{sub:exercise-4.24a}
|
||||
|
||||
Show that if $\mathscr{A}$ is nonempty, then
|
||||
$\powerset{\bigcap A} = \bigcap\; \{\powerset{X} \mid X \in \mathscr{A} \}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.24b}}%
|
||||
\label{sub:exercise-4.24b}
|
||||
|
||||
Show that
|
||||
$$\bigcup\; \{ \powerset{X} \mid X \in \mathscr{A} \} \subseteq
|
||||
\powerset{\bigcup A}.$$
|
||||
Under what conditions does equality hold?
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Exercise 4.25}}%
|
||||
\label{sub:exercise-4.25}
|
||||
|
||||
Is $A \cup \bigcup \mathscr{B}$ always the same as
|
||||
$\bigcup\; \{ A \cup X \mid X \in \mathscr{B} \}$?
|
||||
If not, then under what conditions does equality hold?
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -88,6 +88,7 @@
|
|||
|
||||
\newcommand\@statement[1]{%
|
||||
\linedivider*\paragraph{\normalfont\normalsize\textit{#1.}}}
|
||||
\newcommand{\statementpadding}{\ \vspace{8pt}}
|
||||
|
||||
\newenvironment{answer}{\@statement{Answer}}{\hfill$\square$}
|
||||
\newenvironment{axiom}{\@statement{Axiom}}{\hfill$\square$}
|
||||
|
|
Loading…
Reference in New Issue