Add notion of "assumption"s and rename `pair` to a more general `tuple` macro.

finite-set-exercises
Joshua Potter 2023-08-13 10:03:41 -06:00
parent 3fbeb6435b
commit bbae7136b1
3 changed files with 354 additions and 291 deletions

View File

@ -35,6 +35,14 @@
An \textbf{expression} is a finite sequence of symbols.
\section{\defined{\texorpdfstring{$n$}{n}-tuple}}%
\hyperlabel{ref:n-tuple}
An \textbf{$n$-tuple} is recursively defined as
$$\ltuple{x_1}{x_{n+1}} = \tuple{\ltuple{x_1}{x_n}, x_{n+1}}$$
for $n > 1$.
We also define $\tuple{x} = x$.
\section{\defined{Well-Formed Formula}}%
\hyperlabel{ref:well-formed-formula}
@ -63,17 +71,52 @@
\chapter{Useful Facts About Sets}%
\hyperlabel{chap:useful-facts-about-sets}
\section{\sorry{Lemma 0A}}%
\section{\unverified{Lemma 0A}}%
\hyperlabel{sec:lemma-0a}
\begin{lemma}[0A]
Assume that $\langle x_1, \ldots, x_m \rangle =
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
Assume that $\ltuple{x_1}{x_m} = \ltuple{y_1, \ldots, y_m}{y_{m+k}}$.
Then $x_1 = \ltuple{y_1}{y_{k+1}}$.
\end{lemma}
\begin{proof}
TODO
For natural number $m$, let $P(m)$ be the statement:
\begin{assumption}
\hyperlabel{sec:lemma-0a-eq1}
\text{If } \ltuple{x_1}{x_m} = \ltuple{y_1, \ldots, y_m}{y_{m+k}}
\text{ then } x_1 = \ltuple{y_1}{y_{k+1}}.
\end{assumption}
\noindent
We proceed by induction on $m$.
\paragraph{Base Case}%
Suppose $\tuple{x_1} = \ltuple{y_1}{y_{1 + k}}$.
By definition of an \nameref{ref:n-tuple}, $\tuple{x_1} = x_1$.
Thus $x_1 = \ltuple{y_1}{y_{k + 1}}$.
Hence $P(1)$ holds true.
\paragraph{Inductive Step}%
Suppose for $m \geq 1$ that $P(m)$ is true and assume
\begin{equation}
\hyperlabel{sec:lemma-0a-eq2}
\ltuple{x_1}{x_{m+1}} = \ltuple{y_1, \ldots, y_{m+1}}{y_{m+1+k}}.
\end{equation}
By definition of an \nameref{ref:n-tuple}, we can decompose
\eqref{sec:lemma-0a-eq2} into the following two identities
\begin{align*}
x_{m+1} & = y_{m+1+k} \\
\ltuple{x_1}{x_m} & = \ltuple{y_1}{y_{m+k}}.
\end{align*}
By \eqref{sec:lemma-0a-eq1}, $P(m)$ implies $x_1 = \ltuple{y_1}{y_{k+1}}$.
Hence $P(m+1)$ holds true.
\paragraph{Conclusion}%
By induction, $P(m)$ holds true for all $m \geq 1$.
\end{proof}
\chapter{Sentential Logic}%

File diff suppressed because it is too large Load Diff

View File

@ -92,6 +92,22 @@
% Admonitions
% ========================================
\newcommand\@assumptionbody[1]{
\begin{equation}
\setlength{\abovedisplayskip}{0pt}
\setlength{\belowdisplayskip}{0pt}
#1
\end{equation}}
\NewEnviron{assumption}[1][]{%
\ifstrempty{#1}{%
\begin{tcolorbox}[bottom=8pt]
\@assumptionbody{\BODY}
\end{tcolorbox}}{%
\begin{tcolorbox}[title=#1,bottom=8pt]
\@assumptionbody{\BODY}
\end{tcolorbox}}}
\NewEnviron{note}{%
\begin{tcolorbox}[%
sharp corners,
@ -156,6 +172,7 @@
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
\newcommand{\dom}[1]{\textop{dom}{#1}}
\newcommand{\fld}[1]{\textop{fld}{#1}}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
@ -164,9 +181,12 @@
\newcommand{\img}[2]{#1\!\left\llbracket#2\right\rrbracket}
\newcommand{\ioc}[2]{\left(#1, #2\right]}
\newcommand{\ioo}[2]{\left(#1, #2\right)}
\newcommand{\ltuple}[2]{\left< #1, \ldots, #2 \right>}
\newcommand{\powerset}[1]{\mathscr{P}#1}
\newcommand{\ran}[1]{\textop{ran}{#1}}
\newcommand{\textop}[1]{\mathop{\text{#1}}}
\newcommand{\tuple}[1]{\left< #1 \right>}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
\let\oldemptyset\emptyset