Use swap theorems in pigeonhole principle proof.

Establish precedent for embedding LaTeX proof into code.
fin-dom-ran
Joshua Potter 2023-11-11 09:06:40 -07:00
parent 857d0ea83e
commit b97b8fbbca
5 changed files with 150 additions and 108 deletions

View File

@ -126,4 +126,4 @@ theorem exercise_1_4 (x y : α) (hx : x ∈ B) (hy : y ∈ B)
(Set.singleton_subset_iff.mpr hx) (Set.singleton_subset_iff.mpr hx)
(Set.singleton_subset_iff.mpr hy) (Set.singleton_subset_iff.mpr hy)
end Enderton.Set.Chapter_1 end Enderton.Set.Chapter_1

View File

@ -20,7 +20,8 @@ A ∩ B = B ∩ A
-/ -/
theorem commutative_law_i (A B : Set α) theorem commutative_law_i (A B : Set α)
: A B = B A := calc A B : A B = B A :=
calc A B
_ = { x | x ∈ A x ∈ B } := rfl _ = { x | x ∈ A x ∈ B } := rfl
_ = { x | x ∈ B x ∈ A } := by _ = { x | x ∈ B x ∈ A } := by
ext ext

View File

@ -23,8 +23,16 @@ If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
-/ -/
lemma lemma_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C) lemma lemma_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
: OrderedPair x y ∈ 𝒫 𝒫 C := by : OrderedPair x y ∈ 𝒫 𝒫 C := by
/-
> Let `C` be an arbitrary set and `x, y ∈ C`. Then by definition of the power
> set, `{x}` and `{x, y}` are members of `𝒫 C`.
-/
have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
/-
> Likewise `{{x}, {x, y}}` is a member of `𝒫 𝒫 C`. By definition of an ordered
> pair, `⟨x, y⟩ = {{x}, {x, y}}`. This concludes our proof.
-/
exact Set.mem_mem_imp_pair_subset hxs hxys exact Set.mem_mem_imp_pair_subset hxs hxys
/-- #### Theorem 3D /-- #### Theorem 3D
@ -33,10 +41,23 @@ If `⟨x, y⟩ ∈ A`, then `x` and `y` belong to ` A`.
-/ -/
theorem theorem_3d {A : Set (Set (Set α))} (h : OrderedPair x y ∈ A) theorem theorem_3d {A : Set (Set (Set α))} (h : OrderedPair x y ∈ A)
: x ∈ ⋃₀ (⋃₀ A) ∧ y ∈ ⋃₀ (⋃₀ A) := by : x ∈ ⋃₀ (⋃₀ A) ∧ y ∈ ⋃₀ (⋃₀ A) := by
/-
> Let `A` be a set and `⟨x, y⟩ ∈ A`. By definition of an ordered pair,
>
> `⟨x, y⟩ = {{x}, {x, y}}`.
>
> By Exercise 2.3, `{{x}, {x, y}} ⊆ A`. Then `{x, y} ∈ A`.
-/
have hp := Chapter_2.exercise_2_3 (OrderedPair x y) h have hp := Chapter_2.exercise_2_3 (OrderedPair x y) h
unfold OrderedPair at hp unfold OrderedPair at hp
have hq : {x, y} ∈ ⋃₀ A := hp (by simp) have hq : {x, y} ∈ ⋃₀ A := hp (by simp)
/-
> Another application of Exercise 2.3 implies `{x, y} ∈ A`.
-/
have : {x, y} ⊆ ⋃₀ ⋃₀ A := Chapter_2.exercise_2_3 {x, y} hq have : {x, y} ⊆ ⋃₀ ⋃₀ A := Chapter_2.exercise_2_3 {x, y} hq
/-
> Therefore `x, y ∈ A`.
-/
exact ⟨this (by simp), this (by simp)⟩ exact ⟨this (by simp), this (by simp)⟩
@ -199,7 +220,7 @@ theorem theorem_3j_a {F : Set.HRelation α β}
Set.mem_union, Set.mem_union,
Prod.mk.injEq Prod.mk.injEq
] at ht ] at ht
have ⟨a₁, ha₁⟩ := ht have ⟨a₁, ha₁⟩ := ht
apply Or.elim ha₁ apply Or.elim ha₁
· intro ⟨⟨a, b, hab⟩, _⟩ · intro ⟨⟨a, b, hab⟩, _⟩
have := mem_pair_imp_fst_mem_dom hab.left have := mem_pair_imp_fst_mem_dom hab.left
@ -1073,7 +1094,7 @@ theorem exercise_3_17_i {F : Set.HRelation β γ} {G : Set.HRelation α β}
(hF : isSingleRooted F) (hG : isSingleRooted G) (hF : isSingleRooted F) (hG : isSingleRooted G)
: isSingleRooted (comp F G):= by : isSingleRooted (comp F G):= by
intro v hv intro v hv
have ⟨u₁, hu₁⟩ := ran_exists hv have ⟨u₁, hu₁⟩ := ran_exists hv
have hu₁' := hu₁ have hu₁' := hu₁
unfold comp at hu₁' unfold comp at hu₁'
@ -1081,13 +1102,13 @@ theorem exercise_3_17_i {F : Set.HRelation β γ} {G : Set.HRelation α β}
have ⟨t₁, ht₁⟩ := hu₁' have ⟨t₁, ht₁⟩ := hu₁'
unfold ExistsUnique unfold ExistsUnique
refine ⟨u₁, ⟨mem_pair_imp_fst_mem_dom hu₁, hu₁⟩, ?_⟩ refine ⟨u₁, ⟨mem_pair_imp_fst_mem_dom hu₁, hu₁⟩, ?_⟩
intro u₂ hu₂ intro u₂ hu₂
have hu₂' := hu₂ have hu₂' := hu₂
unfold comp at hu₂' unfold comp at hu₂'
simp only [Set.mem_setOf_eq] at hu₂' simp only [Set.mem_setOf_eq] at hu₂'
have ⟨_, ⟨t₂, ht₂⟩⟩ := hu₂' have ⟨_, ⟨t₂, ht₂⟩⟩ := hu₂'
have ht : t₁ = t₂ := single_rooted_eq_unique hF ht₁.right ht₂.right have ht : t₁ = t₂ := single_rooted_eq_unique hF ht₁.right ht₂.right
rw [ht] at ht₁ rw [ht] at ht₁
exact single_rooted_eq_unique hG ht₂.left ht₁.left exact single_rooted_eq_unique hG ht₂.left ht₁.left
@ -1435,7 +1456,7 @@ theorem exercise_3_19_x
apply Or.elim ht₁ apply Or.elim ht₁
· intro ht · intro ht
rw [← ht] at ht₂ rw [← ht] at ht₂
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at ht₂ simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at ht₂
apply Or.elim ht₂ apply Or.elim ht₂
· intro ha · intro ha
rw [ha] at hx rw [ha] at hx
@ -1780,7 +1801,7 @@ theorem exercise_3_28 {A : Set α} {B : Set β}
have hX₁sub := mem_pair_imp_fst_mem_dom hX₁ have hX₁sub := mem_pair_imp_fst_mem_dom hX₁
rw [dG] at hX₁sub rw [dG] at hX₁sub
simp only [Set.mem_powerset_iff] at hX₁sub simp only [Set.mem_powerset_iff] at hX₁sub
have ht' := hX₁sub ht have ht' := hX₁sub ht
rw [← hf.right.dom_eq] at ht' rw [← hf.right.dom_eq] at ht'
have ⟨ft, hft⟩ := dom_exists ht' have ⟨ft, hft⟩ := dom_exists ht'
@ -1885,12 +1906,12 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
show ∀ t, t ∈ B → t ∈ X show ∀ t, t ∈ B → t ∈ X
intro t ht intro t ht
rw [hB] at ht rw [hB] at ht
simp only [Set.mem_sInter] at ht simp only [Set.mem_sInter] at ht
exact ht X ⟨hX₁, hX₂⟩ exact ht X ⟨hX₁, hX₂⟩
exact hX₂ (hMono B X ⟨hB₁, hX₁⟩ hx) exact hX₂ (hMono B X ⟨hB₁, hX₁⟩ hx)
rw [hB] rw [hB]
exact this exact this
have hC_supset : C ⊆ F C := by have hC_supset : C ⊆ F C := by
intro x hx intro x hx
rw [hC] at hx rw [hC] at hx
@ -1910,7 +1931,7 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
have ⟨T, hT⟩ := ht have ⟨T, hT⟩ := ht
exact hT.left.left hT.right exact hT.left.left hT.right
exact hMono X C ⟨hC₁, hC₂⟩ (hX.left.right hX.right) exact hMono X C ⟨hC₁, hC₂⟩ (hX.left.right hX.right)
have hC_sub_A : C ⊆ A := by have hC_sub_A : C ⊆ A := by
show ∀ t, t ∈ C → t ∈ A show ∀ t, t ∈ C → t ∈ A
intro t ht intro t ht
@ -1936,7 +1957,7 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
intro t ht intro t ht
simp only [Set.mem_sUnion, Set.mem_setOf_eq] simp only [Set.mem_sUnion, Set.mem_setOf_eq]
exact ⟨X, hX, ht⟩ exact ⟨X, hX, ht⟩
have hB_sub_A : B ⊆ A := by have hB_sub_A : B ⊆ A := by
show ∀ t, t ∈ B → t ∈ A show ∀ t, t ∈ B → t ∈ A
intro t ht intro t ht
@ -1951,11 +1972,11 @@ theorem exercise_3_30_a : F B = B ∧ F C = C := by
· exact hB_subset · exact hB_subset
· have hInter : ∀ X, X ∈ {X | X ⊆ A ∧ F X ⊆ X} → B ⊆ X := by · have hInter : ∀ X, X ∈ {X | X ⊆ A ∧ F X ⊆ X} → B ⊆ X := by
intro X hX intro X hX
simp only [Set.mem_setOf_eq] at hX simp only [Set.mem_setOf_eq] at hX
rw [hB] rw [hB]
show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X
intro t ht intro t ht
simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht
exact ht X hX exact ht X hX
refine hInter (F B) ⟨?_, ?_⟩ refine hInter (F B) ⟨?_, ?_⟩
· show ∀ t, t ∈ F B → t ∈ A · show ∀ t, t ∈ F B → t ∈ A
@ -1978,7 +1999,7 @@ theorem exercise_3_30_b : ∀ X, X ⊆ A ∧ F X = X → B ⊆ X ∧ X ⊆ C :=
rw [hB] rw [hB]
show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X show ∀ t, t ∈ ⋂₀ {X | X ⊆ A ∧ F X ⊆ X} → t ∈ X
intro t ht intro t ht
simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht simp only [Set.mem_sInter, Set.mem_setOf_eq] at ht
exact ht X ⟨hX₁, this⟩ exact ht X ⟨hX₁, this⟩
· have : X ⊆ F X := Eq.subset (id (Eq.symm hX₂)) · have : X ⊆ F X := Eq.subset (id (Eq.symm hX₂))
rw [hC] rw [hC]
@ -2173,7 +2194,7 @@ theorem exercise_3_36 {f : Set.HRelation α β}
Prod.exists, Prod.exists,
exists_and_right, exists_and_right,
exists_eq_right exists_eq_right
] at hx ] at hx
apply Or.elim hx apply Or.elim hx
· intro ⟨_, _, hx₁⟩ · intro ⟨_, _, hx₁⟩
rw [← hf.dom_eq] rw [← hf.dom_eq]
@ -2595,4 +2616,4 @@ theorem exercise_3_45 {A : Rel α α} {B : Rel β β} {R : Rel (α × β) (α ×
have := hB.trans b₁ b₂ b₃ ha₁.right hb₂ have := hB.trans b₁ b₂ b₃ ha₁.right hb₂
exact (hR a₁ b₁ a₃ b₃).mpr (Or.inr ⟨ha₂, this⟩) exact (hR a₁ b₁ a₃ b₃).mpr (Or.inr ⟨ha₂, this⟩)
end Enderton.Set.Chapter_3 end Enderton.Set.Chapter_3

View File

@ -72,28 +72,72 @@ lemma pigeonhole_principle_aux (n : )
∀ f : , ∀ f : ,
Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M → Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M →
¬ Set.SurjOn f M (Set.Iio n) := by ¬ Set.SurjOn f M (Set.Iio n) := by
/-
> Let
>
> `S = {n ∈ ω | ∀ M ⊂ n, every one-to-one function f: M → n is not onto}`. (1)
>
> We show that (i) `0 ∈ S` and (ii) if `n ∈ S`, then so is `n⁺`. Afterward we
> prove (iii) the theorem statement.
-/
induction n with induction n with
/-
## (i)
> By definition, `0 = ∅`.
-/
| zero => | zero =>
intro _ hM intro _ hM
unfold Set.Iio at hM unfold Set.Iio at hM
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM
/-
> Then `0` has no proper subsets.
-/
rw [Set.ssubset_empty_iff_false] at hM rw [Set.ssubset_empty_iff_false] at hM
/-
> Hence `0 ∈ S` vacuously.
-/
exact False.elim hM exact False.elim hM
/-
## (ii)
> Suppose `n ∈ S` and `M ⊂ n⁺`. Furthermore, let `f: M → n⁺` be a one-to-one
> function.
-/
| succ n ih => | succ n ih =>
intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj
/-
> If `M = ∅`, it vacuously holds that `f` is not onto `n⁺`.
-/
by_cases hM' : M = ∅ by_cases hM' : M = ∅
· rw [hM', Set.SurjOn_emptyset_Iio_iff_eq_zero] at hf_surj · rw [hM', Set.SurjOn_emptyset_Iio_iff_eq_zero] at hf_surj
simp at hf_surj simp at hf_surj
/-
> Otherwise `M ≠ 0`. Because `M` is finite, the trichotomy law for `ω` implies
> the existence of a largest member `p ∈ M`. There are two cases to consider:
-/
by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n
-- Trivial case. `f` must not be onto if this is the case. /-
### Case 1
> `n ∉ ran f`.
> Then `f` is not onto `n⁺`.
-/
· have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp) · have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp)
exact absurd ⟨t, ht⟩ h exact absurd ⟨t, ht⟩ h
/-
-- Continue under the assumption `n ∈ ran f`. ### Case 2
> `n ∈ ran f`.
> Then there exists some `t ∈ M` such that `⟨t, n⟩ ∈ f`.
-/
have ⟨t, ht₁, ht₂⟩ := not_not.mp h have ⟨t, ht₁, ht₂⟩ := not_not.mp h
/-
> Define `f': M → n⁺` given by
>
> `f'(p) = f(t) = n`
> `f'(t) = f(p)`
> `f'(x) = f(x)` for all other `x`.
>
> That is, `f'` is a variant of `f` in which the largest element of its domain
> (i.e. `p`) corresponds to value `n`.
-/
-- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`, i.e. a maximum member. -- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`, i.e. a maximum member.
have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by
refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_ refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_
@ -104,69 +148,19 @@ lemma pigeonhole_principle_aux (n : )
exact Set.nmem_singleton_empty.mp hM' exact Set.nmem_singleton_empty.mp hM'
· show M ⊆ M · show M ⊆ M
exact Eq.subset rfl exact Eq.subset rfl
/-
-- `g` is a variant of `f` in which the largest element of its domain > Next define `g = f' - {⟨p, n⟩}`. Then `g` is a function mapping `M - {p}` to
-- (i.e. `p`) corresponds to value `n`. > `n`.
let g x := if x = p then n else if x = t then f p else f x -/
let g := Set.Function.swap f p t
have hg_maps : Set.MapsTo g M (Set.Iio (n + 1)) := by /-
intro x hx > Since `f` is one-to-one, `f'` and `g` are also one-to-one.
dsimp only -/
by_cases hx₁ : x = p have hg_maps := Set.Function.swap_MapsTo_self hp₁ ht₁ hf_maps
· rw [hx₁] have hg_inj := Set.Function.swap_InjOn_self hp₁ ht₁ hf_inj
simp /-
· rw [if_neg hx₁] > Then (1) indicates `g` must not be onto `n`.
by_cases hx₂ : x = t -/
· rw [hx₂]
simp only [ite_true, Set.mem_Iio]
exact hf_maps hp₁
· rw [if_neg hx₂]
simp only [Set.mem_Iio]
exact hf_maps hx
have hg_inj : Set.InjOn g M := by
intro x₁ hx₁ x₂ hx₂ hf'
by_cases hc₁ : x₁ = p
· by_cases hc₂ : x₂ = p
· rw [hc₁, hc₂]
· dsimp at hf'
rw [hc₁] at hf'
simp only [ite_self, ite_true] at hf'
by_cases hc₃ : x₂ = t
· rw [if_neg hc₂, if_pos hc₃, ← ht₂] at hf'
rw [hc₁] at hx₁ ⊢
rw [hc₃] at hx₂ ⊢
exact hf_inj hx₁ hx₂ hf'.symm
· rw [if_neg hc₂, if_neg hc₃, ← ht₂] at hf'
have := hf_inj ht₁ hx₂ hf'
exact absurd this.symm hc₃
· by_cases hc₂ : x₂ = p
· rw [hc₂] at hf'
simp only [ite_self, ite_true] at hf'
by_cases hc₃ : x₁ = t
· rw [if_neg hc₁, if_pos hc₃, ← ht₂] at hf'
rw [hc₃] at hx₁ ⊢
rw [hc₂] at hx₂ ⊢
have := hf_inj hx₂ hx₁ hf'
exact this.symm
· rw [if_neg hc₁, if_neg hc₃, ← ht₂] at hf'
have := hf_inj hx₁ ht₁ hf'
exact absurd this hc₃
· dsimp only at hf'
rw [if_neg hc₁, if_neg hc₂] at hf'
by_cases hc₃ : x₁ = t
· by_cases hc₄ : x₂ = t
· rw [hc₃, hc₄]
· rw [if_pos hc₃, if_neg hc₄] at hf'
have := hf_inj hp₁ hx₂ hf'
exact absurd this.symm hc₂
· by_cases hc₄ : x₂ = t
· rw [if_neg hc₃, if_pos hc₄] at hf'
have := hf_inj hx₁ hp₁ hf'
exact absurd this hc₁
· rw [if_neg hc₃, if_neg hc₄] at hf'
exact hf_inj hx₁ hx₂ hf'
let M' := M \ {p} let M' := M \ {p}
have hM' : M' ⊂ Set.Iio n := by have hM' : M' ⊂ Set.Iio n := by
by_cases hc : p = n by_cases hc : p = n
@ -209,18 +203,28 @@ lemma pigeonhole_principle_aux (n : )
· -- `Set.MapsTo g M' (Set.Iio n)` · -- `Set.MapsTo g M' (Set.Iio n)`
intro x hx intro x hx
have hx₁ : x ∈ M := Set.mem_of_mem_diff hx have hx₁ : x ∈ M := Set.mem_of_mem_diff hx
apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁) apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁) id
· exact id intro hx₂
· intro hx₂ unfold Set.Function.swap at hx₂
rw [← show g p = n by simp] at hx₂ by_cases hc₁ : x = p
exact absurd (hg_inj hx₁ hp₁ hx₂) hx.right · exact absurd hc₁ hx.right
· rw [if_neg hc₁] at hx₂
by_cases hc₂ : x = t
· rw [if_pos hc₂, ← ht₂] at hx₂
have := hf_inj hp₁ ht₁ hx₂
rw [← hc₂] at this
exact absurd this.symm hc₁
· rw [if_neg hc₂, ← ht₂] at hx₂
have := hf_inj hx₁ ht₁ hx₂
exact absurd this hc₂
· -- `Set.InjOn g M'` · -- `Set.InjOn g M'`
intro x₁ hx₁ x₂ hx₂ hg intro x₁ hx₁ x₂ hx₂ hg
have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁ have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁
have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂ have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂
exact hg_inj hx₁' hx₂' hg exact hg_inj hx₁' hx₂' hg
/-
-- We have shown `g` isn't surjective. This is another way of saying that. > That is, there exists some `a ∈ n` such that `a ∉ ran g`.
-/
have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by
unfold Set.SurjOn at ng_surj unfold Set.SurjOn at ng_surj
rw [Set.subset_def] at ng_surj rw [Set.subset_def] at ng_surj
@ -231,12 +235,15 @@ lemma pigeonhole_principle_aux (n : )
not_exists, not_exists,
not_and, not_and,
exists_prop exists_prop
] at ng_surj ] at ng_surj
unfold Set.image unfold Set.image
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and]
exact ng_surj exact ng_surj
/-
-- If `g` isn't surjective then neither is `f`. > By the trichotomy law for `ω`, `a ≠ n`. Therefore `a ∉ ran f'`.
> `ran f' = ran f` meaning `a ∉ ran f`. Because `a ∈ n ∈n⁺`, Theorem 4F implies
> `a ∈ n⁺`. Hence `f` is not onto `n⁺`.
-/
refine absurd (hf_surj $ calc a refine absurd (hf_surj $ calc a
_ < n := ha₁ _ < n := ha₁
_ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_) _ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_)
@ -248,17 +255,20 @@ lemma pigeonhole_principle_aux (n : )
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢ simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢
intro x hx intro x hx
by_cases hxp : x = p by_cases hxp : x = p
· rw [if_pos hxp] · unfold Set.Function.swap
rw [if_pos hxp, ht₂]
exact (Nat.ne_of_lt ha₁).symm exact (Nat.ne_of_lt ha₁).symm
· refine ha₂ x ?_ · refine ha₂ x ?_
exact Set.mem_diff_of_mem hx hxp exact Set.mem_diff_of_mem hx hxp
ext x ext x
dsimp only
unfold Set.Function.swap
simp only [Set.mem_image, Set.mem_Iio] simp only [Set.mem_image, Set.mem_Iio]
apply Iff.intro apply Iff.intro
· intro ⟨y, hy₁, hy₂⟩ · intro ⟨y, hy₁, hy₂⟩
by_cases hc₁ : y = p by_cases hc₁ : y = p
· rw [if_pos hc₁] at hy₂ · rw [if_pos hc₁, ht₂] at hy₂
rw [hy₂] at ht₂ rw [hy₂] at ht₂
exact ⟨t, ht₁, ht₂⟩ exact ⟨t, ht₁, ht₂⟩
· rw [if_neg hc₁] at hy₂ · rw [if_neg hc₁] at hy₂
@ -274,15 +284,25 @@ lemma pigeonhole_principle_aux (n : )
· rw [hc₂, ht₂] at hy₂ · rw [hc₂, ht₂] at hy₂
rw [← hc₁, ← hc₂] rw [← hc₁, ← hc₂]
simp only [ite_self, ite_true] simp only [ite_self, ite_true]
exact hy₂ rwa [hc₂, ht₂]
· rw [hc₁, ← Ne.def] at hc₂ · rw [hc₁, ← Ne.def] at hc₂
rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁] rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁]
· by_cases hc₂ : y = t · by_cases hc₂ : y = t
· refine ⟨p, hp₁, ?_⟩ · refine ⟨p, hp₁, ?_⟩
simp only [ite_self, ite_true] simp only [ite_self, ite_true]
rwa [hc₂, ht₂] at hy₂ rwa [hc₂] at hy₂
· refine ⟨y, hy₁, ?_⟩ · refine ⟨y, hy₁, ?_⟩
rwa [if_neg hc₁, if_neg hc₂] rwa [if_neg hc₁, if_neg hc₂]
/-
### Subconclusion
> The foregoing cases are exhaustive. Hence `n⁺ ∈ S`.
## (iii)
> By (i) and (ii), `S` is an inductive set. By Theorem 4B, `S = ω`. Thus for all
> natural numbers `n`, there is no one-to-one correspondence between `n` and a
> proper subset of `n`. In other words, no natural number is equinumerous to a
> proper subset of itself.
-/
/-- /--
No natural number is equinumerous to a proper subset of itself. No natural number is equinumerous to a proper subset of itself.
@ -339,7 +359,7 @@ theorem corollary_6c [DecidableEq α] [Nonempty α]
Set.le_eq_subset, Set.le_eq_subset,
Set.singleton_subset_iff, Set.singleton_subset_iff,
Set.mem_empty_iff_false Set.mem_empty_iff_false
] at hx₃ ] at hx₃
· -- `Set.InjOn H S'` · -- `Set.InjOn H S'`
intro x₁ hx₁ x₂ hx₂ h intro x₁ hx₁ x₂ hx₂ h
have hc₁ : x₁ ∈ S' T := Set.mem_union_left T hx₁ have hc₁ : x₁ ∈ S' T := Set.mem_union_left T hx₁
@ -368,7 +388,7 @@ theorem corollary_6c [DecidableEq α] [Nonempty α]
have hf₂ : R ≈ Set.Iio n := by have hf₂ : R ≈ Set.Iio n := by
have ⟨k, hk⟩ := Set.equinumerous_symm hf₁ have ⟨k, hk⟩ := Set.equinumerous_symm hf₁
exact Set.equinumerous_trans ⟨k, hk⟩ hG exact Set.equinumerous_trans ⟨k, hk⟩ hG
refine absurd hf₂ (pigeonhole_principle ?_) refine absurd hf₂ (pigeonhole_principle ?_)
show R ⊂ Set.Iio n show R ⊂ Set.Iio n
apply And.intro apply And.intro
@ -536,7 +556,7 @@ lemma lemma_6f {n : }
suffices C' ≈ C from suffices C' ≈ C from
⟨m, hm₁, Set.equinumerous_trans (Set.equinumerous_symm this) hm₂⟩ ⟨m, hm₁, Set.equinumerous_trans (Set.equinumerous_symm this) hm₂⟩
-- Proves `f` is a one-to-one correspondence between `C'` and `C`. -- Proves `f` is a one-to-one correspondence between `C'` and `C`.
let f x := if x = p then n else x let f x := if x = p then n else x
refine ⟨f, ?_, ?_, ?_⟩ refine ⟨f, ?_, ?_, ?_⟩
@ -1053,14 +1073,14 @@ theorem exercise_6_7 [DecidableEq α] [Nonempty α] {A : Set α} {f : αα}
have hB₂ : x₂ ∈ B := sorry have hB₂ : x₂ ∈ B := sorry
have hB₃ : B ⊆ A := sorry have hB₃ : B ⊆ A := sorry
have ⟨m₁, n₁, hm₁, hn₁, hmn₁⟩ := subset_size hB₃ hA₁ have ⟨m₁, n₁, hm₁, hn₁, hmn₁⟩ := subset_size hB₃ hA₁
have hf'₁ : Set.MapsTo f (A \ B) (A \ {y}) := sorry have hf'₁ : Set.MapsTo f (A \ B) (A \ {y}) := sorry
have hf'₂ : f '' (A \ B) = A \ {y} := sorry have hf'₂ : f '' (A \ B) = A \ {y} := sorry
have hf'₃ : Set.Finite (A \ B) := sorry have hf'₃ : Set.Finite (A \ B) := sorry
have hf'₄ : Set.Finite (A \ {y}) := sorry have hf'₄ : Set.Finite (A \ {y}) := sorry
have ⟨m₂, n₂, hm₂, hn₂, hmn₂⟩ := finite_dom_ran_size hf'₃ hf'₄ hf'₁ have ⟨m₂, n₂, hm₂, hn₂, hmn₂⟩ := finite_dom_ran_size hf'₃ hf'₄ hf'₁
have h₁ : A \ B ≈ Set.Iio (n₁ - m₁) := sorry have h₁ : A \ B ≈ Set.Iio (n₁ - m₁) := sorry
have h₂ : A \ {y} ≈ Set.Iio (n₁ - 1) := sorry have h₂ : A \ {y} ≈ Set.Iio (n₁ - 1) := sorry
sorry sorry

View File

@ -5,7 +5,7 @@ import Mathlib.Data.Set.Function
Additional theorems around functions defined on sets. Additional theorems around functions defined on sets.
-/ -/
namespace Set namespace Set.Function
/-- /--
Produce a new function that swaps the outputs of the two specified inputs. Produce a new function that swaps the outputs of the two specified inputs.
@ -232,4 +232,4 @@ theorem self_iff_swap_BijOn [DecidableEq α]
: BijOn (swap f a₁ a₂) A B ↔ BijOn f A B := : BijOn (swap f a₁ a₂) A B ↔ BijOn f A B :=
⟨self_BijOn_swap ha₁ ha₂, swap_BijOn_self ha₁ ha₂⟩ ⟨self_BijOn_swap ha₁ ha₂, swap_BijOn_self ha₁ ha₂⟩
end Set end Set.Function