Enderton (logic). Fix up exercise numbering.
parent
8f15ec7d6d
commit
b91ee81261
|
@ -104,8 +104,8 @@ If $S$ is a set of wffs containing all the sentence symbols and closed under all
|
||||||
\section{Exercises 1}%
|
\section{Exercises 1}%
|
||||||
\hyperlabel{sec:exercises-1}
|
\hyperlabel{sec:exercises-1}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.1}}%
|
\subsection{\sorry{Exercise 1.1.1}}%
|
||||||
\hyperlabel{sub:exercise-1.1}
|
\hyperlabel{sub:exercise-1.1.1}
|
||||||
|
|
||||||
Give three sentences in English together with translations into our formal
|
Give three sentences in English together with translations into our formal
|
||||||
language.
|
language.
|
||||||
|
@ -118,8 +118,8 @@ The sentences shoudl be chosen so as to have an interesting structure, and the
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2}}%
|
\subsection{\sorry{Exercise 1.1.2}}%
|
||||||
\hyperlabel{sub:exercise-1.2}
|
\hyperlabel{sub:exercise-1.1.2}
|
||||||
|
|
||||||
Show that there are no wffs of length 2, 3, or 6, but that any other positive
|
Show that there are no wffs of length 2, 3, or 6, but that any other positive
|
||||||
length is possible.
|
length is possible.
|
||||||
|
@ -130,8 +130,8 @@ Show that there are no wffs of length 2, 3, or 6, but that any other positive
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.3}}%
|
\subsection{\sorry{Exercise 1.1.3}}%
|
||||||
\hyperlabel{sub:exercise-1.3}
|
\hyperlabel{sub:exercise-1.1.3}
|
||||||
|
|
||||||
Let $\alpha$ be a wff; let $c$ be the number of places at which binary
|
Let $\alpha$ be a wff; let $c$ be the number of places at which binary
|
||||||
connective symbols $(\land, \lor, \Rightarrow, \Leftrightarrow)$ occur in
|
connective symbols $(\land, \lor, \Rightarrow, \Leftrightarrow)$ occur in
|
||||||
|
@ -146,8 +146,8 @@ Show by using the induction principle that $s = c + 1$.
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.4}}%
|
\subsection{\sorry{Exercise 1.1.4}}%
|
||||||
\hyperlabel{sub:exercise-1.4}
|
\hyperlabel{sub:exercise-1.1.4}
|
||||||
|
|
||||||
Assume we have a construction sequence ending in $\phi$, where $\phi$ does not
|
Assume we have a construction sequence ending in $\phi$, where $\phi$ does not
|
||||||
contain the symbol $A_4$.
|
contain the symbol $A_4$.
|
||||||
|
@ -161,8 +161,8 @@ Show that the result is still a legal construction sequence.
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.5}}%
|
\subsection{\sorry{Exercise 1.1.5}}%
|
||||||
\hyperlabel{sub:exercise-1.5}
|
\hyperlabel{sub:exercise-1.1.5}
|
||||||
|
|
||||||
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
|
@ -179,8 +179,8 @@ Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.6}}%
|
\subsection{\sorry{Exercise 1.1.6}}%
|
||||||
\hyperlabel{sub:exercise-1.6}
|
\hyperlabel{sub:exercise-1.1.6}
|
||||||
|
|
||||||
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
|
|
Loading…
Reference in New Issue