Reorganize project once more, consolidating more into `Bookshelf`.
parent
4da324856d
commit
ad9684f53e
|
@ -1,2 +1,3 @@
|
|||
import Bookshelf.Combinator
|
||||
import Bookshelf.List
|
||||
import Bookshelf.Real
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Combinator.Aviary
|
|
@ -10,7 +10,8 @@
|
|||
\label{sec:aviary}
|
||||
|
||||
A list of birds as defined in \textit{To Mock a Mockingbird}.
|
||||
Refer to \href{../../../MockMockingbird/Aviary.html}{MockMockingbird/Aviary} for implementation examples.
|
||||
Refer to \href{../../../../Bookshelf/Combinator/Aviary.html}{Bookshelf/Combinator/Aviary}
|
||||
for implementation examples.
|
||||
|
||||
\begin{itemize}
|
||||
\bird{Bald Eagle} $\hat{E}xy_1y_2y_3z_1z_2z_3 = x(y_1y_2y_3)(z_1z_2z_3)$
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.LTuple.Basic
|
|
@ -1,14 +1,11 @@
|
|||
import Mathlib.Tactic.Ring
|
||||
|
||||
/--
|
||||
A representation of a tuple. In particular, `n`-tuples are defined recursively
|
||||
as follows:
|
||||
A representation of a possibly empty left-biased tuple. `n`-tuples are defined
|
||||
recursively as follows:
|
||||
|
||||
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
||||
|
||||
We allow empty tuples. For a `Tuple`-like type with opposite "endian", refer to
|
||||
`Mathlib.Data.Vector`.
|
||||
|
||||
Keep in mind a tuple in Lean already exists but it differs in two ways:
|
||||
|
||||
1. It is right associative. That is, `(x₁, x₂, x₃)` evaluates to
|
||||
|
@ -20,56 +17,49 @@ Keep in mind a tuple in Lean already exists but it differs in two ways:
|
|||
In general, prefer using `Prod` over this `Tuple` definition. This exists solely
|
||||
for proving theorems outlined in Enderton's book.
|
||||
-/
|
||||
inductive Tuple : (α : Type u) → (size : Nat) → Type u where
|
||||
| nil : Tuple α 0
|
||||
| snoc : Tuple α n → α → Tuple α (n + 1)
|
||||
inductive LTuple : (α : Type u) → (size : Nat) → Type u where
|
||||
| nil : LTuple α 0
|
||||
| snoc : LTuple α n → α → LTuple α (n + 1)
|
||||
|
||||
syntax (priority := high) "t[" term,* "]" : term
|
||||
|
||||
macro_rules
|
||||
| `(t[]) => `(Tuple.nil)
|
||||
| `(t[$x]) => `(Tuple.snoc t[] $x)
|
||||
| `(t[$xs:term,*, $x]) => `(Tuple.snoc t[$xs,*] $x)
|
||||
|
||||
namespace Tuple
|
||||
namespace LTuple
|
||||
|
||||
-- ========================================
|
||||
-- Coercions
|
||||
-- ========================================
|
||||
|
||||
scoped instance : CoeOut (Tuple α (min (m + n) m)) (Tuple α m) where
|
||||
scoped instance : CoeOut (LTuple α (min (m + n) m)) (LTuple α m) where
|
||||
coe := cast (by simp)
|
||||
|
||||
scoped instance : Coe (Tuple α 0) (Tuple α (min n 0)) where
|
||||
scoped instance : Coe (LTuple α 0) (LTuple α (min n 0)) where
|
||||
coe := cast (by rw [Nat.min_zero])
|
||||
|
||||
scoped instance : Coe (Tuple α 0) (Tuple α (min 0 n)) where
|
||||
scoped instance : Coe (LTuple α 0) (LTuple α (min 0 n)) where
|
||||
coe := cast (by rw [Nat.zero_min])
|
||||
|
||||
scoped instance : Coe (Tuple α n) (Tuple α (min n n)) where
|
||||
scoped instance : Coe (LTuple α n) (LTuple α (min n n)) where
|
||||
coe := cast (by simp)
|
||||
|
||||
scoped instance : Coe (Tuple α n) (Tuple α (0 + n)) where
|
||||
scoped instance : Coe (LTuple α n) (LTuple α (0 + n)) where
|
||||
coe := cast (by simp)
|
||||
|
||||
scoped instance : Coe (Tuple α (min m n + 1)) (Tuple α (min (m + 1) (n + 1))) where
|
||||
scoped instance : Coe (LTuple α (min m n + 1)) (LTuple α (min (m + 1) (n + 1))) where
|
||||
coe := cast (by rw [Nat.min_succ_succ])
|
||||
|
||||
scoped instance : Coe (Tuple α m) (Tuple α (min (m + n) m)) where
|
||||
scoped instance : Coe (LTuple α m) (LTuple α (min (m + n) m)) where
|
||||
coe := cast (by simp)
|
||||
|
||||
-- ========================================
|
||||
-- Equality
|
||||
-- ========================================
|
||||
|
||||
theorem eq_nil : @Tuple.nil α = t[] := rfl
|
||||
theorem eq_nil : @LTuple.nil α = nil := rfl
|
||||
|
||||
theorem eq_iff_singleton : (a = b) ↔ (t[a] = t[b]) := by
|
||||
theorem eq_iff_singleton : (a = b) ↔ (snoc a nil = snoc b nil) := by
|
||||
apply Iff.intro
|
||||
· intro h; rw [h]
|
||||
· intro h; injection h
|
||||
|
||||
theorem eq_iff_snoc {t₁ t₂ : Tuple α n}
|
||||
theorem eq_iff_snoc {t₁ t₂ : LTuple α n}
|
||||
: (a = b ∧ t₁ = t₂) ↔ (snoc t₁ a = snoc t₂ b) := by
|
||||
apply Iff.intro
|
||||
· intro ⟨h₁, h₂ ⟩; rw [h₁, h₂]
|
||||
|
@ -81,12 +71,12 @@ theorem eq_iff_snoc {t₁ t₂ : Tuple α n}
|
|||
Implements decidable equality for `Tuple α m`, provided `a` has decidable
|
||||
equality.
|
||||
-/
|
||||
protected def hasDecEq [DecidableEq α] (t₁ t₂ : Tuple α n)
|
||||
protected def hasDecEq [DecidableEq α] (t₁ t₂ : LTuple α n)
|
||||
: Decidable (Eq t₁ t₂) :=
|
||||
match t₁, t₂ with
|
||||
| t[], t[] => isTrue eq_nil
|
||||
| nil, nil => isTrue eq_nil
|
||||
| snoc as a, snoc bs b =>
|
||||
match Tuple.hasDecEq as bs with
|
||||
match LTuple.hasDecEq as bs with
|
||||
| isFalse np => isFalse (fun h => absurd (eq_iff_snoc.mpr h).right np)
|
||||
| isTrue hp =>
|
||||
if hq : a = b then
|
||||
|
@ -94,7 +84,7 @@ protected def hasDecEq [DecidableEq α] (t₁ t₂ : Tuple α n)
|
|||
else
|
||||
isFalse (fun h => absurd (eq_iff_snoc.mpr h).left hq)
|
||||
|
||||
instance [DecidableEq α] : DecidableEq (Tuple α n) := Tuple.hasDecEq
|
||||
instance [DecidableEq α] : DecidableEq (LTuple α n) := LTuple.hasDecEq
|
||||
|
||||
-- ========================================
|
||||
-- Basic API
|
||||
|
@ -103,25 +93,25 @@ instance [DecidableEq α] : DecidableEq (Tuple α n) := Tuple.hasDecEq
|
|||
/--
|
||||
Returns the number of entries of the `Tuple`.
|
||||
-/
|
||||
def size (_ : Tuple α n) : Nat := n
|
||||
def size (_ : LTuple α n) : Nat := n
|
||||
|
||||
/--
|
||||
Returns all but the last entry of the `Tuple`.
|
||||
-/
|
||||
def init : (t : Tuple α (n + 1)) → Tuple α n
|
||||
def init : (t : LTuple α (n + 1)) → LTuple α n
|
||||
| snoc vs _ => vs
|
||||
|
||||
/--
|
||||
Returns the last entry of the `Tuple`.
|
||||
-/
|
||||
def last : Tuple α (n + 1) → α
|
||||
def last : LTuple α (n + 1) → α
|
||||
| snoc _ v => v
|
||||
|
||||
/--
|
||||
Prepends an entry to the start of the `Tuple`.
|
||||
-/
|
||||
def cons : Tuple α n → α → Tuple α (n + 1)
|
||||
| t[], a => t[a]
|
||||
def cons : LTuple α n → α → LTuple α (n + 1)
|
||||
| nil, a => snoc nil a
|
||||
| snoc ts t, a => snoc (cons ts a) t
|
||||
|
||||
-- ========================================
|
||||
|
@ -131,55 +121,55 @@ def cons : Tuple α n → α → Tuple α (n + 1)
|
|||
/--
|
||||
Join two `Tuple`s together end to end.
|
||||
-/
|
||||
def concat : Tuple α m → Tuple α n → Tuple α (m + n)
|
||||
| is, t[] => is
|
||||
def concat : LTuple α m → LTuple α n → LTuple α (m + n)
|
||||
| is, nil => is
|
||||
| is, snoc ts t => snoc (concat is ts) t
|
||||
|
||||
/--
|
||||
Concatenating a `Tuple` with `nil` yields the original `Tuple`.
|
||||
-/
|
||||
theorem self_concat_nil_eq_self (t : Tuple α m) : concat t t[] = t :=
|
||||
theorem self_concat_nil_eq_self (t : LTuple α m) : concat t nil = t :=
|
||||
match t with
|
||||
| t[] => rfl
|
||||
| nil => rfl
|
||||
| snoc _ _ => rfl
|
||||
|
||||
/--
|
||||
Concatenating `nil` with a `Tuple` yields the `Tuple`.
|
||||
-/
|
||||
theorem nil_concat_self_eq_self (t : Tuple α m) : concat t[] t = t := by
|
||||
theorem nil_concat_self_eq_self (t : LTuple α m) : concat nil t = t := by
|
||||
induction t with
|
||||
| nil => unfold concat; simp
|
||||
| @snoc n as a ih =>
|
||||
unfold concat
|
||||
rw [ih]
|
||||
suffices HEq (snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a) ↑(snoc as a)
|
||||
suffices HEq (snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a) ↑(snoc as a)
|
||||
from eq_of_heq this
|
||||
have h₁ := Eq.recOn
|
||||
(motive := fun x h => HEq
|
||||
(snoc (cast (show Tuple α n = Tuple α x by rw [h]) as) a)
|
||||
(snoc (cast (show LTuple α n = LTuple α x by rw [h]) as) a)
|
||||
(snoc as a))
|
||||
(show n = 0 + n by simp)
|
||||
HEq.rfl
|
||||
exact Eq.recOn
|
||||
(motive := fun x h => HEq
|
||||
(snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a)
|
||||
(snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a)
|
||||
(cast h (snoc as a)))
|
||||
(show Tuple α (n + 1) = Tuple α (0 + (n + 1)) by simp)
|
||||
(show LTuple α (n + 1) = LTuple α (0 + (n + 1)) by simp)
|
||||
h₁
|
||||
|
||||
/--
|
||||
Concatenating a `Tuple` to a nonempty `Tuple` moves `concat` calls closer to
|
||||
expression leaves.
|
||||
-/
|
||||
theorem concat_snoc_snoc_concat {bs : Tuple α n}
|
||||
theorem concat_snoc_snoc_concat {bs : LTuple α n}
|
||||
: concat as (snoc bs b) = snoc (concat as bs) b :=
|
||||
rfl
|
||||
|
||||
/--
|
||||
`snoc` is equivalent to concatenating the `init` and `last` element together.
|
||||
-/
|
||||
theorem snoc_eq_init_concat_last (as : Tuple α m)
|
||||
: snoc as a = concat as t[a] := by
|
||||
theorem snoc_eq_init_concat_last (as : LTuple α m)
|
||||
: snoc as a = concat as (snoc nil a) := by
|
||||
cases as with
|
||||
| nil => rfl
|
||||
| snoc _ _ => simp; unfold concat concat; rfl
|
||||
|
@ -192,12 +182,12 @@ theorem snoc_eq_init_concat_last (as : Tuple α m)
|
|||
Take the first `k` entries from the `Tuple` to form a new `Tuple`, or the entire
|
||||
`Tuple` if `k` exceeds the number of entries.
|
||||
-/
|
||||
def take (t : Tuple α n) (k : Nat) : Tuple α (min n k) :=
|
||||
def take (t : LTuple α n) (k : Nat) : LTuple α (min n k) :=
|
||||
if h : n ≤ k then
|
||||
cast (by rw [min_eq_left h]) t
|
||||
else
|
||||
match t with
|
||||
| t[] => t[]
|
||||
| nil => nil
|
||||
| @snoc _ n' as a => cast (by rw [min_lt_succ_eq h]) (take as k)
|
||||
where
|
||||
min_lt_succ_eq {m : Nat} (h : ¬m + 1 ≤ k) : min m k = min (m + 1) k := by
|
||||
|
@ -208,7 +198,7 @@ def take (t : Tuple α n) (k : Nat) : Tuple α (min n k) :=
|
|||
/--
|
||||
Taking no entries from any `Tuple` should yield an empty one.
|
||||
-/
|
||||
theorem self_take_zero_eq_nil (t : Tuple α n) : take t 0 = @nil α := by
|
||||
theorem self_take_zero_eq_nil (t : LTuple α n) : take t 0 = @nil α := by
|
||||
induction t with
|
||||
| nil => simp; rfl
|
||||
| snoc as a ih => unfold take; simp; rw [ih]; simp
|
||||
|
@ -222,7 +212,7 @@ theorem nil_take_zero_eq_nil (k : Nat) : (take (@nil α) k) = @nil α := by
|
|||
/--
|
||||
Taking `n` entries from a `Tuple` of size `n` should yield the same `Tuple`.
|
||||
-/
|
||||
theorem self_take_size_eq_self (t : Tuple α n) : take t n = t := by
|
||||
theorem self_take_size_eq_self (t : LTuple α n) : take t n = t := by
|
||||
cases t with
|
||||
| nil => simp; rfl
|
||||
| snoc as a => unfold take; simp
|
||||
|
@ -231,7 +221,7 @@ theorem self_take_size_eq_self (t : Tuple α n) : take t n = t := by
|
|||
Taking all but the last entry of a `Tuple` is the same result, regardless of the
|
||||
value of the last entry.
|
||||
-/
|
||||
theorem take_subst_last {as : Tuple α n} (a₁ a₂ : α)
|
||||
theorem take_subst_last {as : LTuple α n} (a₁ a₂ : α)
|
||||
: take (snoc as a₁) n = take (snoc as a₂) n := by
|
||||
unfold take
|
||||
simp
|
||||
|
@ -239,7 +229,7 @@ theorem take_subst_last {as : Tuple α n} (a₁ a₂ : α)
|
|||
/--
|
||||
Taking `n` elements from a tuple of size `n + 1` is the same as invoking `init`.
|
||||
-/
|
||||
theorem init_eq_take_pred (t : Tuple α (n + 1)) : take t n = init t := by
|
||||
theorem init_eq_take_pred (t : LTuple α (n + 1)) : take t n = init t := by
|
||||
cases t with
|
||||
| snoc as a =>
|
||||
unfold init take
|
||||
|
@ -251,7 +241,7 @@ theorem init_eq_take_pred (t : Tuple α (n + 1)) : take t n = init t := by
|
|||
If two `Tuple`s are equal, then any initial sequences of those two `Tuple`s are
|
||||
also equal.
|
||||
-/
|
||||
theorem eq_tuple_eq_take {t₁ t₂ : Tuple α n}
|
||||
theorem eq_tuple_eq_take {t₁ t₂ : LTuple α n}
|
||||
: (t₁ = t₂) → (t₁.take k = t₂.take k) := by
|
||||
intro h
|
||||
rw [h]
|
||||
|
@ -260,7 +250,7 @@ theorem eq_tuple_eq_take {t₁ t₂ : Tuple α n}
|
|||
Given a `Tuple` of size `k`, concatenating an arbitrary `Tuple` and taking `k`
|
||||
elements yields the original `Tuple`.
|
||||
-/
|
||||
theorem eq_take_concat {t₁ : Tuple α m} {t₂ : Tuple α n}
|
||||
theorem eq_take_concat {t₁ : LTuple α m} {t₂ : LTuple α n}
|
||||
: take (concat t₁ t₂) m = t₁ := by
|
||||
induction t₂ with
|
||||
| nil =>
|
||||
|
@ -274,4 +264,4 @@ theorem eq_take_concat {t₁ : Tuple α m} {t₂ : Tuple α n}
|
|||
rw [ih]
|
||||
simp
|
||||
|
||||
end Tuple
|
||||
end LTuple
|
|
@ -1,4 +1,6 @@
|
|||
import Bookshelf.Real.Basic
|
||||
import Bookshelf.Real.Function
|
||||
import Bookshelf.Real.Geometry
|
||||
import Bookshelf.Real.Rational
|
||||
import Bookshelf.Real.Sequence
|
||||
import Bookshelf.Real.Set
|
|
@ -0,0 +1 @@
|
|||
import Bookshelf.Real.Function.Step
|
|
@ -1,5 +1,5 @@
|
|||
import Bookshelf.Real.Basic
|
||||
import OneVariableCalculus.Real.Set.Partition
|
||||
import Bookshelf.Real.Set.Partition
|
||||
|
||||
namespace Real.Function
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
import Bookshelf.Real.Geometry.Area
|
||||
import Bookshelf.Real.Geometry.Basic
|
||||
import Bookshelf.Real.Geometry.Rectangle
|
|
@ -1,10 +1,5 @@
|
|||
/-
|
||||
Chapter 1.6
|
||||
|
||||
The concept of area as a set function
|
||||
-/
|
||||
import OneVariableCalculus.Real.Function.Step
|
||||
import OneVariableCalculus.Real.Geometry.Rectangle
|
||||
import Bookshelf.Real.Function.Step
|
||||
import Bookshelf.Real.Geometry.Rectangle
|
||||
|
||||
namespace Real.Geometry.Area
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
import OneVariableCalculus.Real.Geometry.Basic
|
||||
import Bookshelf.Real.Geometry.Basic
|
||||
|
||||
namespace Real
|
||||
|
|
@ -2,8 +2,8 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\linkA}[1]{\href{../../../../Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}}
|
||||
\newcommand{\linkG}[1]{\href{../../../../Bookshelf/Real/Sequence/Geometric.html\##1}{#1}}
|
||||
\newcommand{\linkA}[1]{\href{../../../Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}}
|
||||
\newcommand{\linkG}[1]{\href{../../../Bookshelf/Real/Sequence/Geometric.html\##1}{#1}}
|
||||
|
||||
\begin{document}
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
import Bookshelf.Real.Set.Basic
|
||||
import Bookshelf.Real.Set.Interval
|
||||
import Bookshelf.Real.Set.Partition
|
|
@ -0,0 +1,4 @@
|
|||
import Exercises.Apostol
|
||||
import Exercises.Avigad
|
||||
import Exercises.Enderton
|
||||
import Exercises.Fraleigh
|
|
@ -0,0 +1,4 @@
|
|||
-- Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction
|
||||
-- to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
||||
import Exercises.Apostol.Chapter_I_3
|
||||
import Exercises.Apostol.Exercises_I_3_12
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\href{../../../../OneVariableCalculus/Apostol/Chapter_I_3.html\##1}{#1}}
|
||||
\newcommand{\link}[1]{\href{../../../../Exercises/Apostol/Chapter_I_3.html\##1}{#1}}
|
||||
|
||||
\begin{document}
|
||||
|
|
@ -10,7 +10,7 @@ import Mathlib.Data.Real.Sqrt
|
|||
import Mathlib.Tactic.LibrarySearch
|
||||
|
||||
import Bookshelf.Real.Rational
|
||||
import OneVariableCalculus.Apostol.Chapter_I_3
|
||||
import Exercises.Apostol.Chapter_I_3
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
|
@ -0,0 +1,7 @@
|
|||
-- Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||
import Exercises.Avigad.Chapter2
|
||||
import Exercises.Avigad.Chapter3
|
||||
import Exercises.Avigad.Chapter4
|
||||
import Exercises.Avigad.Chapter5
|
||||
import Exercises.Avigad.Chapter7
|
||||
import Exercises.Avigad.Chapter8
|
|
@ -9,6 +9,7 @@ Dependent Type Theory
|
|||
--
|
||||
-- Define the function `Do_Twice`, as described in Section 2.4.
|
||||
-- ========================================
|
||||
|
||||
namespace ex1
|
||||
|
||||
def double (x : Nat) := x + x
|
||||
|
@ -24,6 +25,7 @@ end ex1
|
|||
--
|
||||
-- Define the functions `curry` and `uncurry`, as described in Section 2.4.
|
||||
-- ========================================
|
||||
|
||||
namespace ex2
|
||||
|
||||
def curry (f : α × β → γ) : (α → β → γ) :=
|
|
@ -0,0 +1,3 @@
|
|||
-- Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego:
|
||||
-- Harcourt/Academic Press, 2001.
|
||||
import Exercises.Enderton.Chapter0
|
|
@ -0,0 +1,287 @@
|
|||
/-
|
||||
Chapter 0
|
||||
|
||||
Useful Facts About Sets
|
||||
-/
|
||||
|
||||
import Bookshelf.LTuple.Basic
|
||||
|
||||
/--
|
||||
The following describes a so-called "generic" tuple. Like an `LTuple`, a generic
|
||||
`n`-tuple is defined recursively like so:
|
||||
|
||||
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
||||
|
||||
Unlike `LTuple`, this tuple bends the syntax above further. For example,
|
||||
both tuples above are equivalent to:
|
||||
|
||||
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
|
||||
|
||||
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, and introduced
|
||||
solely to prove `lemma_0a`. In other words, `LTuple` is an always-normalized
|
||||
variant of an `GTuple`. In general, prefer it over this when working within
|
||||
Enderton's book.
|
||||
-/
|
||||
inductive GTuple : (α : Type u) → (size : Nat × Nat) → Type u where
|
||||
| nil : GTuple α (0, 0)
|
||||
| snoc : GTuple α (p, q) → LTuple α r → GTuple α (p + q, r)
|
||||
|
||||
syntax (priority := high) "t[" term,* "]" : term
|
||||
|
||||
macro_rules
|
||||
| `(t[]) => `(LTuple.nil)
|
||||
| `(t[$x]) => `(LTuple.snoc t[] $x)
|
||||
| `(t[$xs:term,*, $x]) => `(LTuple.snoc t[$xs,*] $x)
|
||||
|
||||
syntax (priority := high) "g[" term,* "]" : term
|
||||
|
||||
macro_rules
|
||||
| `(g[]) => `(GTuple.nil)
|
||||
| `(g[$x]) => `(GTuple.snoc g[] t[$x])
|
||||
| `(g[g[$xs:term,*], $ys:term,*]) => `(GTuple.snoc g[$xs,*] t[$ys,*])
|
||||
| `(g[$x, $xs:term,*]) => `(GTuple.snoc g[] t[$x, $xs,*])
|
||||
|
||||
namespace GTuple
|
||||
|
||||
open scoped LTuple
|
||||
|
||||
-- ========================================
|
||||
-- Normalization
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Converts an `GTuple` into "normal form".
|
||||
-/
|
||||
def norm : GTuple α (m, n) → LTuple α (m + n)
|
||||
| g[] => t[]
|
||||
| snoc is ts => LTuple.concat is.norm ts
|
||||
|
||||
/--
|
||||
Normalization of an empty `GTuple` yields an empty `Tuple`.
|
||||
-/
|
||||
theorem norm_nil_eq_nil : @norm α 0 0 nil = LTuple.nil :=
|
||||
rfl
|
||||
|
||||
/--
|
||||
Normalization of a pseudo-empty `GTuple` yields an empty `Tuple`.
|
||||
-/
|
||||
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc g[] t[]) = t[] := by
|
||||
unfold norm norm
|
||||
rfl
|
||||
|
||||
/--
|
||||
Normalization elimates `snoc` when the `snd` component is `nil`.
|
||||
-/
|
||||
theorem norm_snoc_nil_elim {t : GTuple α (p, q)}
|
||||
: norm (snoc t t[]) = norm t := by
|
||||
cases t with
|
||||
| nil => simp; unfold norm norm; rfl
|
||||
| snoc tf tl =>
|
||||
simp
|
||||
conv => lhs; unfold norm
|
||||
|
||||
/--
|
||||
Normalization eliminates `snoc` when the `fst` component is `nil`.
|
||||
-/
|
||||
theorem norm_nil_snoc_elim {ts : LTuple α n}
|
||||
: norm (snoc g[] ts) = cast (by simp) ts := by
|
||||
unfold norm norm
|
||||
rw [LTuple.nil_concat_self_eq_self]
|
||||
|
||||
/--
|
||||
Normalization distributes across `Tuple.snoc` calls.
|
||||
-/
|
||||
theorem norm_snoc_snoc_norm
|
||||
: norm (snoc as (LTuple.snoc bs b)) = LTuple.snoc (norm (snoc as bs)) b := by
|
||||
unfold norm
|
||||
rw [← LTuple.concat_snoc_snoc_concat]
|
||||
|
||||
/--
|
||||
Normalizing an `GTuple` is equivalent to concatenating the normalized `fst`
|
||||
component with the `snd`.
|
||||
-/
|
||||
theorem norm_snoc_eq_concat {t₁ : GTuple α (p, q)} {t₂ : LTuple α n}
|
||||
: norm (snoc t₁ t₂) = LTuple.concat t₁.norm t₂ := by
|
||||
conv => lhs; unfold norm
|
||||
|
||||
-- ========================================
|
||||
-- Equality
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Implements Boolean equality for `GTuple α n` provided `α` has decidable
|
||||
equality.
|
||||
-/
|
||||
instance BEq [DecidableEq α] : BEq (GTuple α n) where
|
||||
beq t₁ t₂ := t₁.norm == t₂.norm
|
||||
|
||||
-- ========================================
|
||||
-- Basic API
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Returns the number of entries in the `GTuple`.
|
||||
-/
|
||||
def size (_ : GTuple α n) := n
|
||||
|
||||
/--
|
||||
Returns the number of entries in the "shallowest" portion of the `GTuple`. For
|
||||
example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`.
|
||||
-/
|
||||
def length : GTuple α n → Nat
|
||||
| g[] => 0
|
||||
| snoc g[] ts => ts.size
|
||||
| snoc _ ts => 1 + ts.size
|
||||
|
||||
/--
|
||||
Returns the first component of our `GTuple`. For example, the first component of
|
||||
tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`.
|
||||
-/
|
||||
def fst : GTuple α (m, n) → LTuple α m
|
||||
| g[] => t[]
|
||||
| snoc ts _ => ts.norm
|
||||
|
||||
/--
|
||||
Given `GTuple α (m, n)`, the `fst` component is equal to an initial segment of
|
||||
size `k` of the tuple in normal form.
|
||||
-/
|
||||
theorem self_fst_eq_norm_take (t : GTuple α (m, n)) : t.fst = t.norm.take m :=
|
||||
match t with
|
||||
| g[] => by
|
||||
unfold fst
|
||||
rw [LTuple.self_take_zero_eq_nil]
|
||||
simp
|
||||
| snoc tf tl => by
|
||||
unfold fst
|
||||
conv => rhs; unfold norm
|
||||
rw [LTuple.eq_take_concat]
|
||||
simp
|
||||
|
||||
/--
|
||||
If the normal form of an `GTuple` is equal to a `Tuple`, the `fst` component
|
||||
must be a prefix of the `Tuple`.
|
||||
-/
|
||||
theorem norm_eq_fst_eq_take {t₁ : GTuple α (m, n)} {t₂ : LTuple α (m + n)}
|
||||
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) := by
|
||||
intro h
|
||||
rw [self_fst_eq_norm_take, h]
|
||||
|
||||
/--
|
||||
Returns the first component of our `GTuple`. For example, the first component of
|
||||
tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`.
|
||||
-/
|
||||
def snd : GTuple α (m, n) → LTuple α n
|
||||
| g[] => t[]
|
||||
| snoc _ ts => ts
|
||||
|
||||
end GTuple
|
||||
|
||||
-- ========================================
|
||||
-- Lemma 0A
|
||||
--
|
||||
-- Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then
|
||||
-- `x₁ = ⟨y₁, ..., yₖ₊₁⟩`.
|
||||
-- ========================================
|
||||
|
||||
section
|
||||
|
||||
variable {k m n : Nat}
|
||||
variable (p : 1 ≤ m)
|
||||
variable (q : n + (m - 1) = m + k)
|
||||
|
||||
private lemma n_eq_succ_k : n = k + 1 := by
|
||||
let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by
|
||||
intro h
|
||||
have ff : 1 ≤ 0 := h ▸ p
|
||||
ring_nf at ff
|
||||
exact ff.elim
|
||||
calc
|
||||
n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel]
|
||||
_ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h]
|
||||
_ = m' + 1 + k - m' := by simp
|
||||
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
|
||||
_ = 1 + k := by simp
|
||||
_ = k + 1 := by rw [Nat.add_comm]
|
||||
|
||||
private lemma n_pred_eq_k : n - 1 = k := by
|
||||
have h : k + 1 - 1 = k + 1 - 1 := rfl
|
||||
conv at h => lhs; rw [←n_eq_succ_k p q]
|
||||
simp at h
|
||||
exact h
|
||||
|
||||
private lemma n_geq_one : 1 ≤ n := by
|
||||
rw [n_eq_succ_k p q]
|
||||
simp
|
||||
|
||||
private lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
|
||||
Nat.recOn k
|
||||
(by simp; exact p)
|
||||
(fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1)
|
||||
_ = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc]
|
||||
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
|
||||
_ = k' + 1 + 1 := by rw [ih])
|
||||
|
||||
private lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by
|
||||
rw [min_comm_succ_eq p]
|
||||
exact n_eq_succ_k p q
|
||||
|
||||
private lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by
|
||||
rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)]
|
||||
conv => lhs; rw [n_pred_eq_k p q]
|
||||
|
||||
private def cast_norm : GTuple α (n, m - 1) → LTuple α (m + k)
|
||||
| xs => cast (by rw [q]) xs.norm
|
||||
|
||||
private def cast_fst : GTuple α (n, m - 1) → LTuple α (k + 1)
|
||||
| xs => cast (by rw [n_eq_succ_k p q]) xs.fst
|
||||
|
||||
private def cast_take (ys : LTuple α (m + k)) :=
|
||||
cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1))
|
||||
|
||||
/--
|
||||
Lemma 0A
|
||||
|
||||
Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then
|
||||
`x₁ = ⟨y₁, ..., yₖ₊₁⟩`.
|
||||
-/
|
||||
theorem lemma_0a (xs : GTuple α (n, m - 1)) (ys : LTuple α (m + k))
|
||||
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by
|
||||
intro h
|
||||
suffices HEq
|
||||
(cast (_ : LTuple α n = LTuple α (k + 1)) xs.fst)
|
||||
(cast (_ : LTuple α (min (m + k) (k + 1)) = LTuple α (k + 1)) (LTuple.take ys (k + 1)))
|
||||
from eq_of_heq this
|
||||
congr
|
||||
· exact n_eq_min_comm_succ p q
|
||||
· rfl
|
||||
· exact n_eq_min_comm_succ p q
|
||||
· exact HEq.rfl
|
||||
· exact Eq.recOn
|
||||
(motive := fun _ h => HEq
|
||||
(_ : n + (n - 1) = n + k)
|
||||
(cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q])))
|
||||
(show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by
|
||||
rw [n_eq_min_comm_succ p q])
|
||||
HEq.rfl
|
||||
· exact n_geq_one p q
|
||||
· exact n_pred_eq_k p q
|
||||
· exact Eq.symm (n_eq_min_comm_succ p q)
|
||||
· exact n_pred_eq_k p q
|
||||
· rw [GTuple.self_fst_eq_norm_take]
|
||||
unfold cast_norm at h
|
||||
simp at h
|
||||
rw [←h, ←n_eq_succ_k p q]
|
||||
have h₂ := Eq.recOn
|
||||
(motive := fun x h => HEq
|
||||
(LTuple.take xs.norm n)
|
||||
(LTuple.take (cast (show LTuple α (n + (m - 1)) = LTuple α x by rw [h]) xs.norm) n))
|
||||
(show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q])
|
||||
HEq.rfl
|
||||
exact Eq.recOn
|
||||
(motive := fun x h => HEq
|
||||
(cast h (LTuple.take xs.norm n))
|
||||
(LTuple.take (cast (_ : LTuple α (n + (m - 1)) = LTuple α (m + k)) xs.norm) n))
|
||||
(show LTuple α (min (n + (m - 1)) n) = LTuple α n by simp)
|
||||
h₂
|
||||
|
||||
end
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\href{../../../MathematicalIntroductionLogic/Enderton/Chapter0.html\##1}{#1}}
|
||||
\newcommand{\link}[1]{\href{../../../../Exercises/Enderton/Chapter0.html\##1}{#1}}
|
||||
|
||||
\begin{document}
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
-- Fraleigh, John B. A First Course in Abstract Algebra, n.d.
|
||||
import Exercises.Fraleigh.Chapter1
|
|
@ -16,9 +16,9 @@
|
|||
{"git":
|
||||
{"url": "https://github.com/jrpotter/bookshelf-docgen.git",
|
||||
"subDir?": null,
|
||||
"rev": "1de3481afd987d6b6dbd76245ed3c3eba1d6e680",
|
||||
"rev": "8e2df427700e42610ddb51137698a105555d381d",
|
||||
"name": "doc-gen4",
|
||||
"inputRev?": "1de3481afd987d6b6dbd76245ed3c3eba1d6e680"}},
|
||||
"inputRev?": "8e2df427700e42610ddb51137698a105555d381d"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/mhuisi/lean4-cli",
|
||||
"subDir?": null,
|
||||
|
|
|
@ -12,19 +12,11 @@ require std4 from git
|
|||
"6006307d2ceb8743fea7e00ba0036af8654d0347"
|
||||
require «doc-gen4» from git
|
||||
"https://github.com/jrpotter/bookshelf-docgen.git" @
|
||||
"1de3481afd987d6b6dbd76245ed3c3eba1d6e680"
|
||||
"8e2df427700e42610ddb51137698a105555d381d"
|
||||
|
||||
@[default_target]
|
||||
lean_lib «Bookshelf» {
|
||||
srcDir := "src",
|
||||
roots := #[
|
||||
`Bookshelf,
|
||||
`FirstCourseAbstractAlgebra,
|
||||
`MathematicalIntroductionLogic,
|
||||
`MockMockingbird,
|
||||
`OneVariableCalculus,
|
||||
`TheoremProvingInLean
|
||||
]
|
||||
roots := #[`Bookshelf, `Exercises]
|
||||
}
|
||||
|
||||
/--
|
||||
|
|
|
@ -1,2 +0,0 @@
|
|||
import Bookshelf.Real.Set.Basic
|
||||
import Bookshelf.Real.Set.Interval
|
|
@ -1 +0,0 @@
|
|||
import FirstCourseAbstractAlgebra.Fraleigh
|
|
@ -1 +0,0 @@
|
|||
import FirstCourseAbstractAlgebra.Fraleigh.Chapter1
|
|
@ -1,3 +0,0 @@
|
|||
# A First Course in Abstract Algebra
|
||||
|
||||
Fraleigh, John B. A First Course in Abstract Algebra, n.d.
|
|
@ -1,2 +0,0 @@
|
|||
import MathematicalIntroductionLogic.Enderton
|
||||
import MathematicalIntroductionLogic.Tuple
|
|
@ -1 +0,0 @@
|
|||
import MathematicalIntroductionLogic.Enderton.Chapter0
|
|
@ -1,106 +0,0 @@
|
|||
/-
|
||||
Chapter 0
|
||||
|
||||
Useful Facts About Sets
|
||||
-/
|
||||
|
||||
import MathematicalIntroductionLogic.Tuple.Generic
|
||||
|
||||
variable {k m n : Nat}
|
||||
variable (p : 1 ≤ m)
|
||||
variable (q : n + (m - 1) = m + k)
|
||||
|
||||
private lemma n_eq_succ_k : n = k + 1 := by
|
||||
let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by
|
||||
intro h
|
||||
have ff : 1 ≤ 0 := h ▸ p
|
||||
ring_nf at ff
|
||||
exact ff.elim
|
||||
calc
|
||||
n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel]
|
||||
_ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h]
|
||||
_ = m' + 1 + k - m' := by simp
|
||||
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
|
||||
_ = 1 + k := by simp
|
||||
_ = k + 1 := by rw [Nat.add_comm]
|
||||
|
||||
private lemma n_pred_eq_k : n - 1 = k := by
|
||||
have h : k + 1 - 1 = k + 1 - 1 := rfl
|
||||
conv at h => lhs; rw [←n_eq_succ_k p q]
|
||||
simp at h
|
||||
exact h
|
||||
|
||||
private lemma n_geq_one : 1 ≤ n := by
|
||||
rw [n_eq_succ_k p q]
|
||||
simp
|
||||
|
||||
private lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
|
||||
Nat.recOn k
|
||||
(by simp; exact p)
|
||||
(fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1)
|
||||
_ = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc]
|
||||
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
|
||||
_ = k' + 1 + 1 := by rw [ih])
|
||||
|
||||
private lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by
|
||||
rw [min_comm_succ_eq p]
|
||||
exact n_eq_succ_k p q
|
||||
|
||||
private lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by
|
||||
rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)]
|
||||
conv => lhs; rw [n_pred_eq_k p q]
|
||||
|
||||
private def cast_norm : GTuple α (n, m - 1) → Tuple α (m + k)
|
||||
| xs => cast (by rw [q]) xs.norm
|
||||
|
||||
private def cast_fst : GTuple α (n, m - 1) → Tuple α (k + 1)
|
||||
| xs => cast (by rw [n_eq_succ_k p q]) xs.fst
|
||||
|
||||
private def cast_take (ys : Tuple α (m + k)) :=
|
||||
cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1))
|
||||
|
||||
/--
|
||||
Lemma 0A
|
||||
|
||||
Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then
|
||||
`x₁ = ⟨y₁, ..., yₖ₊₁⟩`.
|
||||
-/
|
||||
theorem lemma_0a (xs : GTuple α (n, m - 1)) (ys : Tuple α (m + k))
|
||||
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by
|
||||
intro h
|
||||
suffices HEq
|
||||
(cast (_ : Tuple α n = Tuple α (k + 1)) xs.fst)
|
||||
(cast (_ : Tuple α (min (m + k) (k + 1)) = Tuple α (k + 1)) (Tuple.take ys (k + 1)))
|
||||
from eq_of_heq this
|
||||
congr
|
||||
· exact n_eq_min_comm_succ p q
|
||||
· rfl
|
||||
· exact n_eq_min_comm_succ p q
|
||||
· exact HEq.rfl
|
||||
· exact Eq.recOn
|
||||
(motive := fun _ h => HEq
|
||||
(_ : n + (n - 1) = n + k)
|
||||
(cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q])))
|
||||
(show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by
|
||||
rw [n_eq_min_comm_succ p q])
|
||||
HEq.rfl
|
||||
· exact n_geq_one p q
|
||||
· exact n_pred_eq_k p q
|
||||
· exact Eq.symm (n_eq_min_comm_succ p q)
|
||||
· exact n_pred_eq_k p q
|
||||
· rw [GTuple.self_fst_eq_norm_take]
|
||||
unfold cast_norm at h
|
||||
simp at h
|
||||
rw [←h, ←n_eq_succ_k p q]
|
||||
have h₂ := Eq.recOn
|
||||
(motive := fun x h => HEq
|
||||
(Tuple.take xs.norm n)
|
||||
(Tuple.take (cast (show Tuple α (n + (m - 1)) = Tuple α x by rw [h]) xs.norm) n))
|
||||
(show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q])
|
||||
HEq.rfl
|
||||
exact Eq.recOn
|
||||
(motive := fun x h => HEq
|
||||
(cast h (Tuple.take xs.norm n))
|
||||
(Tuple.take (cast (_ : Tuple α (n + (m - 1)) = Tuple α (m + k)) xs.norm) n))
|
||||
(show Tuple α (min (n + (m - 1)) n) = Tuple α n by simp)
|
||||
h₂
|
|
@ -1,4 +0,0 @@
|
|||
# A Mathematical Introduction to Logic
|
||||
|
||||
Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego:
|
||||
Harcourt/Academic Press, 2001.
|
|
@ -1,2 +0,0 @@
|
|||
import MathematicalIntroductionLogic.Tuple.Basic
|
||||
import MathematicalIntroductionLogic.Tuple.Generic
|
|
@ -1,164 +0,0 @@
|
|||
import MathematicalIntroductionLogic.Tuple.Basic
|
||||
|
||||
/--
|
||||
The following describes a so-called "generic" tuple. Like a `Tuple`, an
|
||||
`n`-tuple is defined recursively like so:
|
||||
|
||||
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
||||
|
||||
Unlike `Tuple`, a "generic" tuple bends the syntax above further. For example,
|
||||
both tuples above are equivalent to:
|
||||
|
||||
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
|
||||
|
||||
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to
|
||||
prove certain theorems (e.g. `Chapter0.lemma_0a`). In other words, `Tuple` is an
|
||||
always-normalized variant of an `GTuple`. In general, prefer it over this when
|
||||
working within Enderton's book.
|
||||
-/
|
||||
inductive GTuple : (α : Type u) → (size : Nat × Nat) → Type u where
|
||||
| nil : GTuple α (0, 0)
|
||||
| snoc : GTuple α (p, q) → Tuple α r → GTuple α (p + q, r)
|
||||
|
||||
syntax (priority := high) "g[" term,* "]" : term
|
||||
|
||||
macro_rules
|
||||
| `(g[]) => `(GTuple.nil)
|
||||
| `(g[$x]) => `(GTuple.snoc g[] t[$x])
|
||||
| `(g[g[$xs:term,*], $ys:term,*]) => `(GTuple.snoc g[$xs,*] t[$ys,*])
|
||||
| `(g[$x, $xs:term,*]) => `(GTuple.snoc g[] t[$x, $xs,*])
|
||||
|
||||
namespace GTuple
|
||||
|
||||
open scoped Tuple
|
||||
|
||||
-- ========================================
|
||||
-- Normalization
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Converts an `GTuple` into "normal form".
|
||||
-/
|
||||
def norm : GTuple α (m, n) → Tuple α (m + n)
|
||||
| g[] => t[]
|
||||
| snoc is ts => Tuple.concat is.norm ts
|
||||
|
||||
/--
|
||||
Normalization of an empty `GTuple` yields an empty `Tuple`.
|
||||
-/
|
||||
theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil :=
|
||||
rfl
|
||||
|
||||
/--
|
||||
Normalization of a pseudo-empty `GTuple` yields an empty `Tuple`.
|
||||
-/
|
||||
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc g[] t[]) = t[] := by
|
||||
unfold norm norm
|
||||
rfl
|
||||
|
||||
/--
|
||||
Normalization elimates `snoc` when the `snd` component is `nil`.
|
||||
-/
|
||||
theorem norm_snoc_nil_elim {t : GTuple α (p, q)}
|
||||
: norm (snoc t t[]) = norm t := by
|
||||
cases t with
|
||||
| nil => simp; unfold norm norm; rfl
|
||||
| snoc tf tl =>
|
||||
simp
|
||||
conv => lhs; unfold norm
|
||||
|
||||
/--
|
||||
Normalization eliminates `snoc` when the `fst` component is `nil`.
|
||||
-/
|
||||
theorem norm_nil_snoc_elim {ts : Tuple α n}
|
||||
: norm (snoc g[] ts) = cast (by simp) ts := by
|
||||
unfold norm norm
|
||||
rw [Tuple.nil_concat_self_eq_self]
|
||||
|
||||
/--
|
||||
Normalization distributes across `Tuple.snoc` calls.
|
||||
-/
|
||||
theorem norm_snoc_snoc_norm
|
||||
: norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by
|
||||
unfold norm
|
||||
rw [←Tuple.concat_snoc_snoc_concat]
|
||||
|
||||
/--
|
||||
Normalizing an `GTuple` is equivalent to concatenating the normalized `fst`
|
||||
component with the `snd`.
|
||||
-/
|
||||
theorem norm_snoc_eq_concat {t₁ : GTuple α (p, q)} {t₂ : Tuple α n}
|
||||
: norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by
|
||||
conv => lhs; unfold norm
|
||||
|
||||
-- ========================================
|
||||
-- Equality
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Implements Boolean equality for `GTuple α n` provided `α` has decidable
|
||||
equality.
|
||||
-/
|
||||
instance BEq [DecidableEq α] : BEq (GTuple α n) where
|
||||
beq t₁ t₂ := t₁.norm == t₂.norm
|
||||
|
||||
-- ========================================
|
||||
-- Basic API
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Returns the number of entries in the `GTuple`.
|
||||
-/
|
||||
def size (_ : GTuple α n) := n
|
||||
|
||||
/--
|
||||
Returns the number of entries in the "shallowest" portion of the `GTuple`. For
|
||||
example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`.
|
||||
-/
|
||||
def length : GTuple α n → Nat
|
||||
| g[] => 0
|
||||
| snoc g[] ts => ts.size
|
||||
| snoc _ ts => 1 + ts.size
|
||||
|
||||
/--
|
||||
Returns the first component of our `GTuple`. For example, the first component of
|
||||
tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`.
|
||||
-/
|
||||
def fst : GTuple α (m, n) → Tuple α m
|
||||
| g[] => t[]
|
||||
| snoc ts _ => ts.norm
|
||||
|
||||
/--
|
||||
Given `GTuple α (m, n)`, the `fst` component is equal to an initial segment of
|
||||
size `k` of the tuple in normal form.
|
||||
-/
|
||||
theorem self_fst_eq_norm_take (t : GTuple α (m, n)) : t.fst = t.norm.take m :=
|
||||
match t with
|
||||
| g[] => by
|
||||
unfold fst
|
||||
rw [Tuple.self_take_zero_eq_nil]
|
||||
simp
|
||||
| snoc tf tl => by
|
||||
unfold fst
|
||||
conv => rhs; unfold norm
|
||||
rw [Tuple.eq_take_concat]
|
||||
simp
|
||||
|
||||
/--
|
||||
If the normal form of an `GTuple` is equal to a `Tuple`, the `fst` component
|
||||
must be a prefix of the `Tuple`.
|
||||
-/
|
||||
theorem norm_eq_fst_eq_take {t₁ : GTuple α (m, n)} {t₂ : Tuple α (m + n)}
|
||||
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) := by
|
||||
intro h
|
||||
rw [self_fst_eq_norm_take, h]
|
||||
|
||||
/--
|
||||
Returns the first component of our `GTuple`. For example, the first component of
|
||||
tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`.
|
||||
-/
|
||||
def snd : GTuple α (m, n) → Tuple α n
|
||||
| g[] => t[]
|
||||
| snoc _ ts => ts
|
||||
|
||||
end GTuple
|
|
@ -1 +0,0 @@
|
|||
import MockMockingbird.Aviary
|
|
@ -1,2 +0,0 @@
|
|||
import OneVariableCalculus.Apostol
|
||||
import OneVariableCalculus.Real
|
|
@ -1,2 +0,0 @@
|
|||
import OneVariableCalculus.Apostol.Chapter_I_3
|
||||
import OneVariableCalculus.Apostol.Exercises_I_3_12
|
|
@ -1,4 +0,0 @@
|
|||
# One-Variable Calculus, with an Introduction to Linear Algebra
|
||||
|
||||
Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to
|
||||
Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
|
@ -1,3 +0,0 @@
|
|||
import OneVariableCalculus.Real.Function
|
||||
import OneVariableCalculus.Real.Geometry
|
||||
import OneVariableCalculus.Real.Set
|
|
@ -1 +0,0 @@
|
|||
import OneVariableCalculus.Real.Function.Step
|
|
@ -1,3 +0,0 @@
|
|||
import OneVariableCalculus.Real.Geometry.Area
|
||||
import OneVariableCalculus.Real.Geometry.Basic
|
||||
import OneVariableCalculus.Real.Geometry.Rectangle
|
|
@ -1 +0,0 @@
|
|||
import OneVariableCalculus.Real.Set.Partition
|
|
@ -1 +0,0 @@
|
|||
import TheoremProvingInLean.Avigad
|
|
@ -1,6 +0,0 @@
|
|||
import TheoremProvingInLean.Avigad.Chapter2
|
||||
import TheoremProvingInLean.Avigad.Chapter3
|
||||
import TheoremProvingInLean.Avigad.Chapter4
|
||||
import TheoremProvingInLean.Avigad.Chapter5
|
||||
import TheoremProvingInLean.Avigad.Chapter7
|
||||
import TheoremProvingInLean.Avigad.Chapter8
|
|
@ -1,3 +0,0 @@
|
|||
# Theorem Proving in Lean
|
||||
|
||||
Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
Loading…
Reference in New Issue