Reorganize project once more, consolidating more into `Bookshelf`.

finite-set-exercises
Joshua Potter 2023-05-04 15:05:13 -06:00
parent 4da324856d
commit ad9684f53e
65 changed files with 382 additions and 396 deletions

View File

@ -1,2 +1,3 @@
import Bookshelf.Combinator
import Bookshelf.List
import Bookshelf.Real

View File

@ -0,0 +1 @@
import Bookshelf.Combinator.Aviary

View File

@ -10,7 +10,8 @@
\label{sec:aviary}
A list of birds as defined in \textit{To Mock a Mockingbird}.
Refer to \href{../../../MockMockingbird/Aviary.html}{MockMockingbird/Aviary} for implementation examples.
Refer to \href{../../../../Bookshelf/Combinator/Aviary.html}{Bookshelf/Combinator/Aviary}
for implementation examples.
\begin{itemize}
\bird{Bald Eagle} $\hat{E}xy_1y_2y_3z_1z_2z_3 = x(y_1y_2y_3)(z_1z_2z_3)$

1
Bookshelf/LTuple.lean Normal file
View File

@ -0,0 +1 @@
import Bookshelf.LTuple.Basic

View File

@ -1,14 +1,11 @@
import Mathlib.Tactic.Ring
/--
A representation of a tuple. In particular, `n`-tuples are defined recursively
as follows:
A representation of a possibly empty left-biased tuple. `n`-tuples are defined
recursively as follows:
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
We allow empty tuples. For a `Tuple`-like type with opposite "endian", refer to
`Mathlib.Data.Vector`.
Keep in mind a tuple in Lean already exists but it differs in two ways:
1. It is right associative. That is, `(x₁, x₂, x₃)` evaluates to
@ -20,56 +17,49 @@ Keep in mind a tuple in Lean already exists but it differs in two ways:
In general, prefer using `Prod` over this `Tuple` definition. This exists solely
for proving theorems outlined in Enderton's book.
-/
inductive Tuple : (α : Type u) → (size : Nat) → Type u where
| nil : Tuple α 0
| snoc : Tuple α n → α → Tuple α (n + 1)
inductive LTuple : (α : Type u) → (size : Nat) → Type u where
| nil : LTuple α 0
| snoc : LTuple α n → αLTuple α (n + 1)
syntax (priority := high) "t[" term,* "]" : term
macro_rules
| `(t[]) => `(Tuple.nil)
| `(t[$x]) => `(Tuple.snoc t[] $x)
| `(t[$xs:term,*, $x]) => `(Tuple.snoc t[$xs,*] $x)
namespace Tuple
namespace LTuple
-- ========================================
-- Coercions
-- ========================================
scoped instance : CoeOut (Tuple α (min (m + n) m)) (Tuple α m) where
scoped instance : CoeOut (LTuple α (min (m + n) m)) (LTuple α m) where
coe := cast (by simp)
scoped instance : Coe (Tuple α 0) (Tuple α (min n 0)) where
scoped instance : Coe (LTuple α 0) (LTuple α (min n 0)) where
coe := cast (by rw [Nat.min_zero])
scoped instance : Coe (Tuple α 0) (Tuple α (min 0 n)) where
scoped instance : Coe (LTuple α 0) (LTuple α (min 0 n)) where
coe := cast (by rw [Nat.zero_min])
scoped instance : Coe (Tuple α n) (Tuple α (min n n)) where
scoped instance : Coe (LTuple α n) (LTuple α (min n n)) where
coe := cast (by simp)
scoped instance : Coe (Tuple α n) (Tuple α (0 + n)) where
scoped instance : Coe (LTuple α n) (LTuple α (0 + n)) where
coe := cast (by simp)
scoped instance : Coe (Tuple α (min m n + 1)) (Tuple α (min (m + 1) (n + 1))) where
scoped instance : Coe (LTuple α (min m n + 1)) (LTuple α (min (m + 1) (n + 1))) where
coe := cast (by rw [Nat.min_succ_succ])
scoped instance : Coe (Tuple α m) (Tuple α (min (m + n) m)) where
scoped instance : Coe (LTuple α m) (LTuple α (min (m + n) m)) where
coe := cast (by simp)
-- ========================================
-- Equality
-- ========================================
theorem eq_nil : @Tuple.nil α = t[] := rfl
theorem eq_nil : @LTuple.nil α = nil := rfl
theorem eq_iff_singleton : (a = b) ↔ (t[a] = t[b]) := by
theorem eq_iff_singleton : (a = b) ↔ (snoc a nil = snoc b nil) := by
apply Iff.intro
· intro h; rw [h]
· intro h; injection h
theorem eq_iff_snoc {t₁ t₂ : Tuple α n}
theorem eq_iff_snoc {t₁ t₂ : LTuple α n}
: (a = b ∧ t₁ = t₂) ↔ (snoc t₁ a = snoc t₂ b) := by
apply Iff.intro
· intro ⟨h₁, h₂ ⟩; rw [h₁, h₂]
@ -81,12 +71,12 @@ theorem eq_iff_snoc {t₁ t₂ : Tuple α n}
Implements decidable equality for `Tuple α m`, provided `a` has decidable
equality.
-/
protected def hasDecEq [DecidableEq α] (t₁ t₂ : Tuple α n)
protected def hasDecEq [DecidableEq α] (t₁ t₂ : LTuple α n)
: Decidable (Eq t₁ t₂) :=
match t₁, t₂ with
| t[], t[] => isTrue eq_nil
| nil, nil => isTrue eq_nil
| snoc as a, snoc bs b =>
match Tuple.hasDecEq as bs with
match LTuple.hasDecEq as bs with
| isFalse np => isFalse (fun h => absurd (eq_iff_snoc.mpr h).right np)
| isTrue hp =>
if hq : a = b then
@ -94,7 +84,7 @@ protected def hasDecEq [DecidableEq α] (t₁ t₂ : Tuple α n)
else
isFalse (fun h => absurd (eq_iff_snoc.mpr h).left hq)
instance [DecidableEq α] : DecidableEq (Tuple α n) := Tuple.hasDecEq
instance [DecidableEq α] : DecidableEq (LTuple α n) := LTuple.hasDecEq
-- ========================================
-- Basic API
@ -103,25 +93,25 @@ instance [DecidableEq α] : DecidableEq (Tuple α n) := Tuple.hasDecEq
/--
Returns the number of entries of the `Tuple`.
-/
def size (_ : Tuple α n) : Nat := n
def size (_ : LTuple α n) : Nat := n
/--
Returns all but the last entry of the `Tuple`.
-/
def init : (t : Tuple α (n + 1)) → Tuple α n
def init : (t : LTuple α (n + 1)) → LTuple α n
| snoc vs _ => vs
/--
Returns the last entry of the `Tuple`.
-/
def last : Tuple α (n + 1) → α
def last : LTuple α (n + 1) → α
| snoc _ v => v
/--
Prepends an entry to the start of the `Tuple`.
-/
def cons : Tuple α n → α → Tuple α (n + 1)
| t[], a => t[a]
def cons : LTuple α n → αLTuple α (n + 1)
| nil, a => snoc nil a
| snoc ts t, a => snoc (cons ts a) t
-- ========================================
@ -131,55 +121,55 @@ def cons : Tuple α n → α → Tuple α (n + 1)
/--
Join two `Tuple`s together end to end.
-/
def concat : Tuple α m → Tuple α n → Tuple α (m + n)
| is, t[] => is
def concat : LTuple α m → LTuple α n → LTuple α (m + n)
| is, nil => is
| is, snoc ts t => snoc (concat is ts) t
/--
Concatenating a `Tuple` with `nil` yields the original `Tuple`.
-/
theorem self_concat_nil_eq_self (t : Tuple α m) : concat t t[] = t :=
theorem self_concat_nil_eq_self (t : LTuple α m) : concat t nil = t :=
match t with
| t[] => rfl
| nil => rfl
| snoc _ _ => rfl
/--
Concatenating `nil` with a `Tuple` yields the `Tuple`.
-/
theorem nil_concat_self_eq_self (t : Tuple α m) : concat t[] t = t := by
theorem nil_concat_self_eq_self (t : LTuple α m) : concat nil t = t := by
induction t with
| nil => unfold concat; simp
| @snoc n as a ih =>
unfold concat
rw [ih]
suffices HEq (snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a) ↑(snoc as a)
suffices HEq (snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a) ↑(snoc as a)
from eq_of_heq this
have h₁ := Eq.recOn
(motive := fun x h => HEq
(snoc (cast (show Tuple α n = Tuple α x by rw [h]) as) a)
(snoc (cast (show LTuple α n = LTuple α x by rw [h]) as) a)
(snoc as a))
(show n = 0 + n by simp)
HEq.rfl
exact Eq.recOn
(motive := fun x h => HEq
(snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a)
(snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a)
(cast h (snoc as a)))
(show Tuple α (n + 1) = Tuple α (0 + (n + 1)) by simp)
(show LTuple α (n + 1) = LTuple α (0 + (n + 1)) by simp)
h₁
/--
Concatenating a `Tuple` to a nonempty `Tuple` moves `concat` calls closer to
expression leaves.
-/
theorem concat_snoc_snoc_concat {bs : Tuple α n}
theorem concat_snoc_snoc_concat {bs : LTuple α n}
: concat as (snoc bs b) = snoc (concat as bs) b :=
rfl
/--
`snoc` is equivalent to concatenating the `init` and `last` element together.
-/
theorem snoc_eq_init_concat_last (as : Tuple α m)
: snoc as a = concat as t[a] := by
theorem snoc_eq_init_concat_last (as : LTuple α m)
: snoc as a = concat as (snoc nil a) := by
cases as with
| nil => rfl
| snoc _ _ => simp; unfold concat concat; rfl
@ -192,12 +182,12 @@ theorem snoc_eq_init_concat_last (as : Tuple α m)
Take the first `k` entries from the `Tuple` to form a new `Tuple`, or the entire
`Tuple` if `k` exceeds the number of entries.
-/
def take (t : Tuple α n) (k : Nat) : Tuple α (min n k) :=
def take (t : LTuple α n) (k : Nat) : LTuple α (min n k) :=
if h : n ≤ k then
cast (by rw [min_eq_left h]) t
else
match t with
| t[] => t[]
| nil => nil
| @snoc _ n' as a => cast (by rw [min_lt_succ_eq h]) (take as k)
where
min_lt_succ_eq {m : Nat} (h : ¬m + 1 ≤ k) : min m k = min (m + 1) k := by
@ -208,7 +198,7 @@ def take (t : Tuple α n) (k : Nat) : Tuple α (min n k) :=
/--
Taking no entries from any `Tuple` should yield an empty one.
-/
theorem self_take_zero_eq_nil (t : Tuple α n) : take t 0 = @nil α := by
theorem self_take_zero_eq_nil (t : LTuple α n) : take t 0 = @nil α := by
induction t with
| nil => simp; rfl
| snoc as a ih => unfold take; simp; rw [ih]; simp
@ -222,7 +212,7 @@ theorem nil_take_zero_eq_nil (k : Nat) : (take (@nil α) k) = @nil α := by
/--
Taking `n` entries from a `Tuple` of size `n` should yield the same `Tuple`.
-/
theorem self_take_size_eq_self (t : Tuple α n) : take t n = t := by
theorem self_take_size_eq_self (t : LTuple α n) : take t n = t := by
cases t with
| nil => simp; rfl
| snoc as a => unfold take; simp
@ -231,7 +221,7 @@ theorem self_take_size_eq_self (t : Tuple α n) : take t n = t := by
Taking all but the last entry of a `Tuple` is the same result, regardless of the
value of the last entry.
-/
theorem take_subst_last {as : Tuple α n} (a₁ a₂ : α)
theorem take_subst_last {as : LTuple α n} (a₁ a₂ : α)
: take (snoc as a₁) n = take (snoc as a₂) n := by
unfold take
simp
@ -239,7 +229,7 @@ theorem take_subst_last {as : Tuple α n} (a₁ a₂ : α)
/--
Taking `n` elements from a tuple of size `n + 1` is the same as invoking `init`.
-/
theorem init_eq_take_pred (t : Tuple α (n + 1)) : take t n = init t := by
theorem init_eq_take_pred (t : LTuple α (n + 1)) : take t n = init t := by
cases t with
| snoc as a =>
unfold init take
@ -251,7 +241,7 @@ theorem init_eq_take_pred (t : Tuple α (n + 1)) : take t n = init t := by
If two `Tuple`s are equal, then any initial sequences of those two `Tuple`s are
also equal.
-/
theorem eq_tuple_eq_take {t₁ t₂ : Tuple α n}
theorem eq_tuple_eq_take {t₁ t₂ : LTuple α n}
: (t₁ = t₂) → (t₁.take k = t₂.take k) := by
intro h
rw [h]
@ -260,7 +250,7 @@ theorem eq_tuple_eq_take {t₁ t₂ : Tuple α n}
Given a `Tuple` of size `k`, concatenating an arbitrary `Tuple` and taking `k`
elements yields the original `Tuple`.
-/
theorem eq_take_concat {t₁ : Tuple α m} {t₂ : Tuple α n}
theorem eq_take_concat {t₁ : LTuple α m} {t₂ : LTuple α n}
: take (concat t₁ t₂) m = t₁ := by
induction t₂ with
| nil =>
@ -274,4 +264,4 @@ theorem eq_take_concat {t₁ : Tuple α m} {t₂ : Tuple α n}
rw [ih]
simp
end Tuple
end LTuple

View File

@ -1,4 +1,6 @@
import Bookshelf.Real.Basic
import Bookshelf.Real.Function
import Bookshelf.Real.Geometry
import Bookshelf.Real.Rational
import Bookshelf.Real.Sequence
import Bookshelf.Real.Set

View File

@ -0,0 +1 @@
import Bookshelf.Real.Function.Step

View File

@ -1,5 +1,5 @@
import Bookshelf.Real.Basic
import OneVariableCalculus.Real.Set.Partition
import Bookshelf.Real.Set.Partition
namespace Real.Function

View File

@ -0,0 +1,3 @@
import Bookshelf.Real.Geometry.Area
import Bookshelf.Real.Geometry.Basic
import Bookshelf.Real.Geometry.Rectangle

View File

@ -1,10 +1,5 @@
/-
Chapter 1.6
The concept of area as a set function
-/
import OneVariableCalculus.Real.Function.Step
import OneVariableCalculus.Real.Geometry.Rectangle
import Bookshelf.Real.Function.Step
import Bookshelf.Real.Geometry.Rectangle
namespace Real.Geometry.Area

View File

@ -1,4 +1,4 @@
import OneVariableCalculus.Real.Geometry.Basic
import Bookshelf.Real.Geometry.Basic
namespace Real

View File

@ -2,8 +2,8 @@
\input{preamble}
\newcommand{\linkA}[1]{\href{../../../../Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}}
\newcommand{\linkG}[1]{\href{../../../../Bookshelf/Real/Sequence/Geometric.html\##1}{#1}}
\newcommand{\linkA}[1]{\href{../../../Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}}
\newcommand{\linkG}[1]{\href{../../../Bookshelf/Real/Sequence/Geometric.html\##1}{#1}}
\begin{document}

3
Bookshelf/Real/Set.lean Normal file
View File

@ -0,0 +1,3 @@
import Bookshelf.Real.Set.Basic
import Bookshelf.Real.Set.Interval
import Bookshelf.Real.Set.Partition

4
Exercises.lean Normal file
View File

@ -0,0 +1,4 @@
import Exercises.Apostol
import Exercises.Avigad
import Exercises.Enderton
import Exercises.Fraleigh

4
Exercises/Apostol.lean Normal file
View File

@ -0,0 +1,4 @@
-- Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction
-- to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
import Exercises.Apostol.Chapter_I_3
import Exercises.Apostol.Exercises_I_3_12

View File

@ -3,7 +3,7 @@
\input{preamble}
\newcommand{\link}[1]{\href{../../../../OneVariableCalculus/Apostol/Chapter_I_3.html\##1}{#1}}
\newcommand{\link}[1]{\href{../../../../Exercises/Apostol/Chapter_I_3.html\##1}{#1}}
\begin{document}

View File

@ -10,7 +10,7 @@ import Mathlib.Data.Real.Sqrt
import Mathlib.Tactic.LibrarySearch
import Bookshelf.Real.Rational
import OneVariableCalculus.Apostol.Chapter_I_3
import Exercises.Apostol.Chapter_I_3
-- ========================================
-- Exercise 1

7
Exercises/Avigad.lean Normal file
View File

@ -0,0 +1,7 @@
-- Avigad, Jeremy. Theorem Proving in Lean, n.d.
import Exercises.Avigad.Chapter2
import Exercises.Avigad.Chapter3
import Exercises.Avigad.Chapter4
import Exercises.Avigad.Chapter5
import Exercises.Avigad.Chapter7
import Exercises.Avigad.Chapter8

View File

@ -9,6 +9,7 @@ Dependent Type Theory
--
-- Define the function `Do_Twice`, as described in Section 2.4.
-- ========================================
namespace ex1
def double (x : Nat) := x + x
@ -24,6 +25,7 @@ end ex1
--
-- Define the functions `curry` and `uncurry`, as described in Section 2.4.
-- ========================================
namespace ex2
def curry (f : α × β → γ) : (α → β → γ) :=

3
Exercises/Enderton.lean Normal file
View File

@ -0,0 +1,3 @@
-- Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego:
-- Harcourt/Academic Press, 2001.
import Exercises.Enderton.Chapter0

View File

@ -0,0 +1,287 @@
/-
Chapter 0
Useful Facts About Sets
-/
import Bookshelf.LTuple.Basic
/--
The following describes a so-called "generic" tuple. Like an `LTuple`, a generic
`n`-tuple is defined recursively like so:
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
Unlike `LTuple`, this tuple bends the syntax above further. For example,
both tuples above are equivalent to:
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, and introduced
solely to prove `lemma_0a`. In other words, `LTuple` is an always-normalized
variant of an `GTuple`. In general, prefer it over this when working within
Enderton's book.
-/
inductive GTuple : (α : Type u) → (size : Nat × Nat) → Type u where
| nil : GTuple α (0, 0)
| snoc : GTuple α (p, q) → LTuple α r → GTuple α (p + q, r)
syntax (priority := high) "t[" term,* "]" : term
macro_rules
| `(t[]) => `(LTuple.nil)
| `(t[$x]) => `(LTuple.snoc t[] $x)
| `(t[$xs:term,*, $x]) => `(LTuple.snoc t[$xs,*] $x)
syntax (priority := high) "g[" term,* "]" : term
macro_rules
| `(g[]) => `(GTuple.nil)
| `(g[$x]) => `(GTuple.snoc g[] t[$x])
| `(g[g[$xs:term,*], $ys:term,*]) => `(GTuple.snoc g[$xs,*] t[$ys,*])
| `(g[$x, $xs:term,*]) => `(GTuple.snoc g[] t[$x, $xs,*])
namespace GTuple
open scoped LTuple
-- ========================================
-- Normalization
-- ========================================
/--
Converts an `GTuple` into "normal form".
-/
def norm : GTuple α (m, n) → LTuple α (m + n)
| g[] => t[]
| snoc is ts => LTuple.concat is.norm ts
/--
Normalization of an empty `GTuple` yields an empty `Tuple`.
-/
theorem norm_nil_eq_nil : @norm α 0 0 nil = LTuple.nil :=
rfl
/--
Normalization of a pseudo-empty `GTuple` yields an empty `Tuple`.
-/
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc g[] t[]) = t[] := by
unfold norm norm
rfl
/--
Normalization elimates `snoc` when the `snd` component is `nil`.
-/
theorem norm_snoc_nil_elim {t : GTuple α (p, q)}
: norm (snoc t t[]) = norm t := by
cases t with
| nil => simp; unfold norm norm; rfl
| snoc tf tl =>
simp
conv => lhs; unfold norm
/--
Normalization eliminates `snoc` when the `fst` component is `nil`.
-/
theorem norm_nil_snoc_elim {ts : LTuple α n}
: norm (snoc g[] ts) = cast (by simp) ts := by
unfold norm norm
rw [LTuple.nil_concat_self_eq_self]
/--
Normalization distributes across `Tuple.snoc` calls.
-/
theorem norm_snoc_snoc_norm
: norm (snoc as (LTuple.snoc bs b)) = LTuple.snoc (norm (snoc as bs)) b := by
unfold norm
rw [← LTuple.concat_snoc_snoc_concat]
/--
Normalizing an `GTuple` is equivalent to concatenating the normalized `fst`
component with the `snd`.
-/
theorem norm_snoc_eq_concat {t₁ : GTuple α (p, q)} {t₂ : LTuple α n}
: norm (snoc t₁ t₂) = LTuple.concat t₁.norm t₂ := by
conv => lhs; unfold norm
-- ========================================
-- Equality
-- ========================================
/--
Implements Boolean equality for `GTuple α n` provided `α` has decidable
equality.
-/
instance BEq [DecidableEq α] : BEq (GTuple α n) where
beq t₁ t₂ := t₁.norm == t₂.norm
-- ========================================
-- Basic API
-- ========================================
/--
Returns the number of entries in the `GTuple`.
-/
def size (_ : GTuple α n) := n
/--
Returns the number of entries in the "shallowest" portion of the `GTuple`. For
example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`.
-/
def length : GTuple α n → Nat
| g[] => 0
| snoc g[] ts => ts.size
| snoc _ ts => 1 + ts.size
/--
Returns the first component of our `GTuple`. For example, the first component of
tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`.
-/
def fst : GTuple α (m, n) → LTuple α m
| g[] => t[]
| snoc ts _ => ts.norm
/--
Given `GTuple α (m, n)`, the `fst` component is equal to an initial segment of
size `k` of the tuple in normal form.
-/
theorem self_fst_eq_norm_take (t : GTuple α (m, n)) : t.fst = t.norm.take m :=
match t with
| g[] => by
unfold fst
rw [LTuple.self_take_zero_eq_nil]
simp
| snoc tf tl => by
unfold fst
conv => rhs; unfold norm
rw [LTuple.eq_take_concat]
simp
/--
If the normal form of an `GTuple` is equal to a `Tuple`, the `fst` component
must be a prefix of the `Tuple`.
-/
theorem norm_eq_fst_eq_take {t₁ : GTuple α (m, n)} {t₂ : LTuple α (m + n)}
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) := by
intro h
rw [self_fst_eq_norm_take, h]
/--
Returns the first component of our `GTuple`. For example, the first component of
tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`.
-/
def snd : GTuple α (m, n) → LTuple α n
| g[] => t[]
| snoc _ ts => ts
end GTuple
-- ========================================
-- Lemma 0A
--
-- Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then
-- `x₁ = ⟨y₁, ..., yₖ₊₁⟩`.
-- ========================================
section
variable {k m n : Nat}
variable (p : 1 ≤ m)
variable (q : n + (m - 1) = m + k)
private lemma n_eq_succ_k : n = k + 1 := by
let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by
intro h
have ff : 1 ≤ 0 := h ▸ p
ring_nf at ff
exact ff.elim
calc
n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel]
_ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h]
_ = m' + 1 + k - m' := by simp
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
_ = 1 + k := by simp
_ = k + 1 := by rw [Nat.add_comm]
private lemma n_pred_eq_k : n - 1 = k := by
have h : k + 1 - 1 = k + 1 - 1 := rfl
conv at h => lhs; rw [←n_eq_succ_k p q]
simp at h
exact h
private lemma n_geq_one : 1 ≤ n := by
rw [n_eq_succ_k p q]
simp
private lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
Nat.recOn k
(by simp; exact p)
(fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1)
_ = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc]
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
_ = k' + 1 + 1 := by rw [ih])
private lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by
rw [min_comm_succ_eq p]
exact n_eq_succ_k p q
private lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by
rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)]
conv => lhs; rw [n_pred_eq_k p q]
private def cast_norm : GTuple α (n, m - 1) → LTuple α (m + k)
| xs => cast (by rw [q]) xs.norm
private def cast_fst : GTuple α (n, m - 1) → LTuple α (k + 1)
| xs => cast (by rw [n_eq_succ_k p q]) xs.fst
private def cast_take (ys : LTuple α (m + k)) :=
cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1))
/--
Lemma 0A
Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then
`x₁ = ⟨y₁, ..., yₖ₊₁⟩`.
-/
theorem lemma_0a (xs : GTuple α (n, m - 1)) (ys : LTuple α (m + k))
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by
intro h
suffices HEq
(cast (_ : LTuple α n = LTuple α (k + 1)) xs.fst)
(cast (_ : LTuple α (min (m + k) (k + 1)) = LTuple α (k + 1)) (LTuple.take ys (k + 1)))
from eq_of_heq this
congr
· exact n_eq_min_comm_succ p q
· rfl
· exact n_eq_min_comm_succ p q
· exact HEq.rfl
· exact Eq.recOn
(motive := fun _ h => HEq
(_ : n + (n - 1) = n + k)
(cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q])))
(show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by
rw [n_eq_min_comm_succ p q])
HEq.rfl
· exact n_geq_one p q
· exact n_pred_eq_k p q
· exact Eq.symm (n_eq_min_comm_succ p q)
· exact n_pred_eq_k p q
· rw [GTuple.self_fst_eq_norm_take]
unfold cast_norm at h
simp at h
rw [←h, ←n_eq_succ_k p q]
have h₂ := Eq.recOn
(motive := fun x h => HEq
(LTuple.take xs.norm n)
(LTuple.take (cast (show LTuple α (n + (m - 1)) = LTuple α x by rw [h]) xs.norm) n))
(show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q])
HEq.rfl
exact Eq.recOn
(motive := fun x h => HEq
(cast h (LTuple.take xs.norm n))
(LTuple.take (cast (_ : LTuple α (n + (m - 1)) = LTuple α (m + k)) xs.norm) n))
(show LTuple α (min (n + (m - 1)) n) = LTuple α n by simp)
h₂
end

View File

@ -2,7 +2,7 @@
\input{preamble}
\newcommand{\link}[1]{\href{../../../MathematicalIntroductionLogic/Enderton/Chapter0.html\##1}{#1}}
\newcommand{\link}[1]{\href{../../../../Exercises/Enderton/Chapter0.html\##1}{#1}}
\begin{document}

2
Exercises/Fraleigh.lean Normal file
View File

@ -0,0 +1,2 @@
-- Fraleigh, John B. A First Course in Abstract Algebra, n.d.
import Exercises.Fraleigh.Chapter1

View File

@ -16,9 +16,9 @@
{"git":
{"url": "https://github.com/jrpotter/bookshelf-docgen.git",
"subDir?": null,
"rev": "1de3481afd987d6b6dbd76245ed3c3eba1d6e680",
"rev": "8e2df427700e42610ddb51137698a105555d381d",
"name": "doc-gen4",
"inputRev?": "1de3481afd987d6b6dbd76245ed3c3eba1d6e680"}},
"inputRev?": "8e2df427700e42610ddb51137698a105555d381d"}},
{"git":
{"url": "https://github.com/mhuisi/lean4-cli",
"subDir?": null,

View File

@ -12,19 +12,11 @@ require std4 from git
"6006307d2ceb8743fea7e00ba0036af8654d0347"
require «doc-gen4» from git
"https://github.com/jrpotter/bookshelf-docgen.git" @
"1de3481afd987d6b6dbd76245ed3c3eba1d6e680"
"8e2df427700e42610ddb51137698a105555d381d"
@[default_target]
lean_lib «Bookshelf» {
srcDir := "src",
roots := #[
`Bookshelf,
`FirstCourseAbstractAlgebra,
`MathematicalIntroductionLogic,
`MockMockingbird,
`OneVariableCalculus,
`TheoremProvingInLean
]
roots := #[`Bookshelf, `Exercises]
}
/--

View File

@ -1,2 +0,0 @@
import Bookshelf.Real.Set.Basic
import Bookshelf.Real.Set.Interval

View File

@ -1 +0,0 @@
import FirstCourseAbstractAlgebra.Fraleigh

View File

@ -1 +0,0 @@
import FirstCourseAbstractAlgebra.Fraleigh.Chapter1

View File

@ -1,3 +0,0 @@
# A First Course in Abstract Algebra
Fraleigh, John B. A First Course in Abstract Algebra, n.d.

View File

@ -1,2 +0,0 @@
import MathematicalIntroductionLogic.Enderton
import MathematicalIntroductionLogic.Tuple

View File

@ -1 +0,0 @@
import MathematicalIntroductionLogic.Enderton.Chapter0

View File

@ -1,106 +0,0 @@
/-
Chapter 0
Useful Facts About Sets
-/
import MathematicalIntroductionLogic.Tuple.Generic
variable {k m n : Nat}
variable (p : 1 ≤ m)
variable (q : n + (m - 1) = m + k)
private lemma n_eq_succ_k : n = k + 1 := by
let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by
intro h
have ff : 1 ≤ 0 := h ▸ p
ring_nf at ff
exact ff.elim
calc
n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel]
_ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h]
_ = m' + 1 + k - m' := by simp
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
_ = 1 + k := by simp
_ = k + 1 := by rw [Nat.add_comm]
private lemma n_pred_eq_k : n - 1 = k := by
have h : k + 1 - 1 = k + 1 - 1 := rfl
conv at h => lhs; rw [←n_eq_succ_k p q]
simp at h
exact h
private lemma n_geq_one : 1 ≤ n := by
rw [n_eq_succ_k p q]
simp
private lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
Nat.recOn k
(by simp; exact p)
(fun k' ih => calc min (m + (k' + 1)) (k' + 1 + 1)
_ = min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc]
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
_ = k' + 1 + 1 := by rw [ih])
private lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by
rw [min_comm_succ_eq p]
exact n_eq_succ_k p q
private lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by
rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)]
conv => lhs; rw [n_pred_eq_k p q]
private def cast_norm : GTuple α (n, m - 1) → Tuple α (m + k)
| xs => cast (by rw [q]) xs.norm
private def cast_fst : GTuple α (n, m - 1) → Tuple α (k + 1)
| xs => cast (by rw [n_eq_succ_k p q]) xs.fst
private def cast_take (ys : Tuple α (m + k)) :=
cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1))
/--
Lemma 0A
Assume that `⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩`. Then
`x₁ = ⟨y₁, ..., yₖ₊₁⟩`.
-/
theorem lemma_0a (xs : GTuple α (n, m - 1)) (ys : Tuple α (m + k))
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by
intro h
suffices HEq
(cast (_ : Tuple α n = Tuple α (k + 1)) xs.fst)
(cast (_ : Tuple α (min (m + k) (k + 1)) = Tuple α (k + 1)) (Tuple.take ys (k + 1)))
from eq_of_heq this
congr
· exact n_eq_min_comm_succ p q
· rfl
· exact n_eq_min_comm_succ p q
· exact HEq.rfl
· exact Eq.recOn
(motive := fun _ h => HEq
(_ : n + (n - 1) = n + k)
(cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q])))
(show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by
rw [n_eq_min_comm_succ p q])
HEq.rfl
· exact n_geq_one p q
· exact n_pred_eq_k p q
· exact Eq.symm (n_eq_min_comm_succ p q)
· exact n_pred_eq_k p q
· rw [GTuple.self_fst_eq_norm_take]
unfold cast_norm at h
simp at h
rw [←h, ←n_eq_succ_k p q]
have h₂ := Eq.recOn
(motive := fun x h => HEq
(Tuple.take xs.norm n)
(Tuple.take (cast (show Tuple α (n + (m - 1)) = Tuple α x by rw [h]) xs.norm) n))
(show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q])
HEq.rfl
exact Eq.recOn
(motive := fun x h => HEq
(cast h (Tuple.take xs.norm n))
(Tuple.take (cast (_ : Tuple α (n + (m - 1)) = Tuple α (m + k)) xs.norm) n))
(show Tuple α (min (n + (m - 1)) n) = Tuple α n by simp)
h₂

View File

@ -1,4 +0,0 @@
# A Mathematical Introduction to Logic
Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego:
Harcourt/Academic Press, 2001.

View File

@ -1,2 +0,0 @@
import MathematicalIntroductionLogic.Tuple.Basic
import MathematicalIntroductionLogic.Tuple.Generic

View File

@ -1,164 +0,0 @@
import MathematicalIntroductionLogic.Tuple.Basic
/--
The following describes a so-called "generic" tuple. Like a `Tuple`, an
`n`-tuple is defined recursively like so:
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
Unlike `Tuple`, a "generic" tuple bends the syntax above further. For example,
both tuples above are equivalent to:
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to
prove certain theorems (e.g. `Chapter0.lemma_0a`). In other words, `Tuple` is an
always-normalized variant of an `GTuple`. In general, prefer it over this when
working within Enderton's book.
-/
inductive GTuple : (α : Type u) → (size : Nat × Nat) → Type u where
| nil : GTuple α (0, 0)
| snoc : GTuple α (p, q) → Tuple α r → GTuple α (p + q, r)
syntax (priority := high) "g[" term,* "]" : term
macro_rules
| `(g[]) => `(GTuple.nil)
| `(g[$x]) => `(GTuple.snoc g[] t[$x])
| `(g[g[$xs:term,*], $ys:term,*]) => `(GTuple.snoc g[$xs,*] t[$ys,*])
| `(g[$x, $xs:term,*]) => `(GTuple.snoc g[] t[$x, $xs,*])
namespace GTuple
open scoped Tuple
-- ========================================
-- Normalization
-- ========================================
/--
Converts an `GTuple` into "normal form".
-/
def norm : GTuple α (m, n) → Tuple α (m + n)
| g[] => t[]
| snoc is ts => Tuple.concat is.norm ts
/--
Normalization of an empty `GTuple` yields an empty `Tuple`.
-/
theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil :=
rfl
/--
Normalization of a pseudo-empty `GTuple` yields an empty `Tuple`.
-/
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc g[] t[]) = t[] := by
unfold norm norm
rfl
/--
Normalization elimates `snoc` when the `snd` component is `nil`.
-/
theorem norm_snoc_nil_elim {t : GTuple α (p, q)}
: norm (snoc t t[]) = norm t := by
cases t with
| nil => simp; unfold norm norm; rfl
| snoc tf tl =>
simp
conv => lhs; unfold norm
/--
Normalization eliminates `snoc` when the `fst` component is `nil`.
-/
theorem norm_nil_snoc_elim {ts : Tuple α n}
: norm (snoc g[] ts) = cast (by simp) ts := by
unfold norm norm
rw [Tuple.nil_concat_self_eq_self]
/--
Normalization distributes across `Tuple.snoc` calls.
-/
theorem norm_snoc_snoc_norm
: norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by
unfold norm
rw [←Tuple.concat_snoc_snoc_concat]
/--
Normalizing an `GTuple` is equivalent to concatenating the normalized `fst`
component with the `snd`.
-/
theorem norm_snoc_eq_concat {t₁ : GTuple α (p, q)} {t₂ : Tuple α n}
: norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by
conv => lhs; unfold norm
-- ========================================
-- Equality
-- ========================================
/--
Implements Boolean equality for `GTuple α n` provided `α` has decidable
equality.
-/
instance BEq [DecidableEq α] : BEq (GTuple α n) where
beq t₁ t₂ := t₁.norm == t₂.norm
-- ========================================
-- Basic API
-- ========================================
/--
Returns the number of entries in the `GTuple`.
-/
def size (_ : GTuple α n) := n
/--
Returns the number of entries in the "shallowest" portion of the `GTuple`. For
example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`.
-/
def length : GTuple α n → Nat
| g[] => 0
| snoc g[] ts => ts.size
| snoc _ ts => 1 + ts.size
/--
Returns the first component of our `GTuple`. For example, the first component of
tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`.
-/
def fst : GTuple α (m, n) → Tuple α m
| g[] => t[]
| snoc ts _ => ts.norm
/--
Given `GTuple α (m, n)`, the `fst` component is equal to an initial segment of
size `k` of the tuple in normal form.
-/
theorem self_fst_eq_norm_take (t : GTuple α (m, n)) : t.fst = t.norm.take m :=
match t with
| g[] => by
unfold fst
rw [Tuple.self_take_zero_eq_nil]
simp
| snoc tf tl => by
unfold fst
conv => rhs; unfold norm
rw [Tuple.eq_take_concat]
simp
/--
If the normal form of an `GTuple` is equal to a `Tuple`, the `fst` component
must be a prefix of the `Tuple`.
-/
theorem norm_eq_fst_eq_take {t₁ : GTuple α (m, n)} {t₂ : Tuple α (m + n)}
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) := by
intro h
rw [self_fst_eq_norm_take, h]
/--
Returns the first component of our `GTuple`. For example, the first component of
tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`.
-/
def snd : GTuple α (m, n) → Tuple α n
| g[] => t[]
| snoc _ ts => ts
end GTuple

View File

@ -1 +0,0 @@
import MockMockingbird.Aviary

View File

@ -1,2 +0,0 @@
import OneVariableCalculus.Apostol
import OneVariableCalculus.Real

View File

@ -1,2 +0,0 @@
import OneVariableCalculus.Apostol.Chapter_I_3
import OneVariableCalculus.Apostol.Exercises_I_3_12

View File

@ -1,4 +0,0 @@
# One-Variable Calculus, with an Introduction to Linear Algebra
Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to
Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.

View File

@ -1,3 +0,0 @@
import OneVariableCalculus.Real.Function
import OneVariableCalculus.Real.Geometry
import OneVariableCalculus.Real.Set

View File

@ -1 +0,0 @@
import OneVariableCalculus.Real.Function.Step

View File

@ -1,3 +0,0 @@
import OneVariableCalculus.Real.Geometry.Area
import OneVariableCalculus.Real.Geometry.Basic
import OneVariableCalculus.Real.Geometry.Rectangle

View File

@ -1 +0,0 @@
import OneVariableCalculus.Real.Set.Partition

View File

@ -1 +0,0 @@
import TheoremProvingInLean.Avigad

View File

@ -1,6 +0,0 @@
import TheoremProvingInLean.Avigad.Chapter2
import TheoremProvingInLean.Avigad.Chapter3
import TheoremProvingInLean.Avigad.Chapter4
import TheoremProvingInLean.Avigad.Chapter5
import TheoremProvingInLean.Avigad.Chapter7
import TheoremProvingInLean.Avigad.Chapter8

View File

@ -1,3 +0,0 @@
# Theorem Proving in Lean
Avigad, Jeremy. Theorem Proving in Lean, n.d.