diff --git a/Bookshelf/Apostol/Chapter_I_03.lean b/Bookshelf/Apostol/Chapter_I_03.lean index c0ffdd5..255760a 100644 --- a/Bookshelf/Apostol/Chapter_I_03.lean +++ b/Bookshelf/Apostol/Chapter_I_03.lean @@ -131,7 +131,7 @@ lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by unfold Int.natAbs have k' : k = ⌈x⌉ := rfl rw [←k'] - have _ : k ≥ 0 := by -- Hint for match below + have : k ≥ 0 := by -- Hint for match below rw [k', ge_iff_le] exact Int.ceil_nonneg (ge_iff_le.mp h) match k with @@ -150,12 +150,12 @@ lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by For every real `x` there exists a positive integer `n` such that `n > x`. -/ theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by - let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩ - have h : x < x' := calc x + let n : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩ + have : x < n := calc x _ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x _ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp - _ = x' := rfl - exact ⟨x', h⟩ + _ = n := rfl + exact ⟨n, this⟩ /-- #### Theorem I.30 @@ -451,7 +451,7 @@ theorem forall_mem_le_forall_mem_imp_sup_le_inf (S T : Set ℝ) (hS : S.Nonempty) (hT : T.Nonempty) (p : ∀ s ∈ S, ∀ t ∈ T, s ≤ t) : ∃ (s : ℝ), IsLUB S s ∧ ∃ (t : ℝ), IsGLB T t ∧ s ≤ t := by - -- Sshow a supremum of `S` and an infimum of `T` exists (since each set bounds + -- Show a supremum of `S` and an infimum of `T` exists (since each set bounds -- above and below the other, respectively). let ⟨s, hs⟩ := hS let ⟨t, ht⟩ := hT diff --git a/Bookshelf/Apostol/Chapter_I_03.tex b/Bookshelf/Apostol/Chapter_I_03.tex index 2f5a229..7488e0f 100644 --- a/Bookshelf/Apostol/Chapter_I_03.tex +++ b/Bookshelf/Apostol/Chapter_I_03.tex @@ -12,19 +12,47 @@ \header{A Set of Axioms for the Real-Number System}{Tom M. Apostol} -\section*{\proceeding{Theorem I.27}}% +\section*{\verified{Lemma 1}}% +\hyperlabel{sec:lemma-1}% + +Nonempty set $S$ has supremum $L$ if and only if set $-S$ has infimum $-L$. + +\begin{proof} + + \link{is\_lub\_neg\_set\_iff\_is\_glb\_set\_neg} + + \divider + + Suppose $L = \sup{S}$ and fix $x \in S$. + By definition of the supremum, $x \leq L$ and $L$ is the smallest value + satisfying this inequality. + Negating both sides of the inequality yields $-x \geq -L$. + Furthermore, $-L$ must be the largest value satisfying this inequality. + Therefore $-L = \inf{-S}$. + +\end{proof} + +\section*{\verified{Theorem I.27}}% \hyperlabel{sec:theorem-i.27}% Every nonempty set $S$ that is bounded below has a greatest lower bound; that -is, there is a real number $L$ such that $L = \inf{S}$. + is, there is a real number $L$ such that $L = \inf{S}$. \begin{proof} \link{exists\_isGLB} + \divider + + Let $S$ be a nonempty set bounded below by $x$. + Then $-S$ is nonempty and bounded above by $x$. + By the completeness axiom, there exists a supremum $L$ of $-S$. + By \nameref{sec:lemma-1}, $L$ is a supremum of $-S$ if and only if $-L$ is an + infimum of $S$. + \end{proof} -\section*{\proceeding{Theorem I.29}}% +\section*{\verified{Theorem I.29}}% \hyperlabel{sec:theorem-i.29} For every real $x$ there exists a positive integer $n$ such that $n > x$. @@ -33,13 +61,22 @@ For every real $x$ there exists a positive integer $n$ such that $n > x$. \link{exists\_pnat\_geq\_self} + \divider + + Let $n = \abs{\ceil{x}} + 1$. + It is trivial to see $n$ is a positive integer satisfying $n \geq 1$. + Thus all that remains to be shown is that $n > x$. + If $x$ is nonpositive, $n > x$ immediately follows from $n \geq 1$. + If $x$ is positive, + $$x = \abs{x} \leq \abs{\ceil{x}} < \abs{\ceil{x}} + 1 = n.$$ + \end{proof} -\section*{\proceeding{Theorem I.30}}% +\section*{\verified{Theorem I.30}}% \hyperlabel{sec:theorem-i.30}% If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive -integer $n$ such that $nx > y$. + integer $n$ such that $nx > y$. \note{This is known as the "Archimedean Property of the Reals."} @@ -47,82 +84,324 @@ integer $n$ such that $nx > y$. \link{exists\_pnat\_mul\_self\_geq\_of\_pos} + \divider + + Let $x > 0$ and $y$ be an arbitrary real number. + By \nameref{sec:theorem-i.29}, there exists a positive integer $n$ such that + $n > y / x$. + Multiplying both sides of the inequality yields $nx > y$ as expected. + \end{proof} -\section*{\proceeding{Theorem I.31}}% +\section*{\verified{Theorem I.31}}% \hyperlabel{sec:theorem-i.31}% If three real numbers $a$, $x$, and $y$ satisfy the inequalities -$$a \leq x \leq a + \frac{y}{n}$$ -for every integer $n \geq 1$, then $x = a$. + $$a \leq x \leq a + \frac{y}{n}$$ for every integer $n \geq 1$, then $x = a$. \begin{proof} \link{forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq} + \divider + + By the trichotomy of the reals, there are three cases to consider: + + \paragraph{Case 1}% + + Suppose $x = a$. + Then we are immediately finished. + + \paragraph{Case 2}% + + Suppose $x < a$. + But by hypothesis, $a \leq x$. + Thus $a < a$, a contradiction. + + \paragraph{Case 3}% + + Suppose $x > a$. + Then there exists some $c > 0$ such that $a + c = x$. + By \nameref{sec:theorem-i.30}, there exists an integer $n > 0$ such that + $nc > y$. + Rearranging terms, we see $y / n < c$. + Therefore $a + y / n < a + c = x$. + But by hypothesis, $x \leq a + y / n$. + Thus $a + y / n < a + y / n$, a contradiction. + + \paragraph{Conclusion}% + + Since these cases are exhaustive and both case 2 and 3 lead to + contradictions, $x = a$ is the only possibility. + \end{proof} -\section*{\proceeding{Theorem I.32}}% +\section*{\verified{Lemma 2}}% +\hyperlabel{sec:lemma-2}% + +If three real numbers $a$, $x$, and $y$ satisfy the inequalities + $$a - y / n \leq x \leq a$$ for every integer $n \geq 1$, then $x = a$. + +\begin{proof} + + \link{forall\_pnat\_frac\_leq\_self\_leq\_imp\_eq} + + \divider + + By the trichotomy of the reals, there are three cases to consider: + + \paragraph{Case 1}% + + Suppose $x = a$. + Then we are immediately finished. + + \paragraph{Case 2}% + + Suppose $x < a$. + Then there exists some $c > 0$ such that $x = a - c$. + By \nameref{sec:theorem-i.30}, there exists an integer $n > 0$ such that + $nc > y$. + Rearranging terms, we see that $y / n < c$. + Therefore $a - y / n > a - c = x$. + But by hypothesis, $x \geq a - y / n$. + Thus $a - y / n < a - y / n$, a contradiction. + + \paragraph{Case 3}% + + Suppose $x > a$. + But by hypothesis $x \leq a$. + Thus $a < a$, a contradiction. + + \paragraph{Conclusion}% + + Since these cases are exhaustive and both case 2 and 3 lead to + contradictions, $x = a$ is the only possibility. + +\end{proof} + +\section*{Theorem I.32}% \hyperlabel{sec:theorem-i.32}% Let $h$ be a given positive number and let $S$ be a set of real numbers. -\begin{enumerate}[(a)] - \item If $S$ has a supremum, then for some $x$ in $S$ we have - $$x > \sup{S} - h.$$ - \item If $S$ has an infimum, then for some $x$ in $S$ we have - $$x < \inf{S} + h.$$ -\end{enumerate} + +\subsection*{\verified{Theorem I.32a}}% +\hyperlabel{sub:theorem-i.32a}% + +If $S$ has a supremum, then for some $x$ in $S$ we have $x > \sup{S} - h$. \begin{proof} - \ % Force space prior to *Proof.* + \link{sup\_imp\_exists\_gt\_sup\_sub\_delta} - \begin{enumerate}[(a)] - \item \link{sup\_imp\_exists\_gt\_sup\_sub\_delta} - \item \link{inf\_imp\_exists\_lt\_inf\_add\_delta} - \end{enumerate} + \divider + + By definition of a supremum, $\sup{S}$ is the least upper bound of $S$. + For the sake of contradiction, suppose for all $x \in S$, + $x \leq \sup{S} - h$. + This immediately implies $\sup{S} - h$ is an upper bound of $S$. + But $\sup{S} - h < \sup{S}$, contradicting $\sup{S}$ being the \textit{least} + upper bound. + Therefore our original hypothesis was wrong. + That is, there exists some $x \in S$ such that $x > \sup{S} - h$. \end{proof} -\section*{\proceeding{Theorem I.33}}% +\subsection*{\verified{Theorem I.32b}}% +\hyperlabel{sub:theorem-i.32b}% + +If $S$ has an infimum, then for some $x$ in $S$ we have $x < \inf{S} + h$. + +\begin{proof} + + \link{inf\_imp\_exists\_lt\_inf\_add\_delta} + + \divider + + By definition of an infimum, $\inf{S}$ is the greatest lower bound of $S$. + For the sake of contradiction, suppose for all $x \in S$, + $x \geq \inf{S} + h$. + This immediately implies $\inf{S} + h$ is a lower bound of $S$. + But $\inf{S} + h > \inf{S}$, contradicting $\inf{S}$ being the + \textit{greatest} lower bound. + Therefore our original hypothesis was wrong. + That is, there exists some $x \in S$ such that $x < \inf{S} + h$. + +\end{proof} + +\section*{Theorem I.33}% \hyperlabel{sec:theorem-i.33}% Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set -$$C = \{a + b : a \in A, b \in B\}.$$ - -\begin{enumerate}[(a)] - \item If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and - $$\sup{C} = \sup{A} + \sup{B}.$$ - \item If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and - $$\inf{C} = \inf{A} + \inf{B}.$$ -\end{enumerate} + $$C = \{a + b : a \in A, b \in B\}.$$ \note{This is known as the "Additive Property."} +\subsection*{\verified{Theorem I.33a}}% +\hyperlabel{sub:theorem-i.33a}% + +If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and + $$\sup{C} = \sup{A} + \sup{B}.$$ + \begin{proof} - \ % Force space prior to *Proof.* + \link{sup\_minkowski\_sum\_eq\_sup\_add\_sup} - \begin{enumerate}[(a)] - \item \link{sup\_minkowski\_sum\_eq\_sup\_add\_sup} - \item \link{inf\_minkowski\_sum\_eq\_inf\_add\_inf} - \end{enumerate} + \divider + + We prove (i) $\sup{A} + \sup{B}$ is an upper bound of $C$ and (ii) + $\sup{A} + \sup{B}$ is the \textit{least} upper bound of $C$. + + \paragraph{(i)}% + \hyperlabel{par:theorem-i.33a-i}% + + Let $x \in C$. + By definition of $C$, there exist elements $a' \in A$ and $b' \in B$ such + that $x = a' + b'$. + By definition of a supremum, $a' \leq \sup{A}$. + Likewise, $b' \leq \sup{B}$. + Therefore $a' + b' \leq \sup{A} + \sup{B}$. + Since $x = a' + b'$ was arbitrarily chosen, it follows $\sup{A} + \sup{B}$ + is an upper bound of $C$. + + \paragraph{(ii)}% + + Since $A$ and $B$ have supremums, $C$ is nonempty. + By \nameref{par:theorem-i.33a-i}, $C$ is bounded above. + Therefore the completeness axiom tells us $C$ has a supremum. + Let $n > 0$ be an integer. + We now prove that + \begin{equation} + \label{par:theorem-i.33a-ii-eq1} + \sup{C} \leq \sup{A} + \sup{B} \leq \sup{C} + 1 / n. + \end{equation} + + \subparagraph{Left-Hand Side}% + + First consider the left-hand side of \eqref{par:theorem-i.33a-ii-eq1}. + By \nameref{par:theorem-i.33a-i}, $\sup{A} + \sup{B}$ is an upper bound of + $C$. + Since $\sup{C}$ is the \textit{least} upper bound of $C$, it follows + $\sup{C} \leq \sup{A} + \sup{B}$. + + \subparagraph{Right-Hand Side}% + + Next consider the right-hand side of \eqref{par:theorem-i.33a-ii-eq1}. + By \nameref{sub:theorem-i.32a}, there exists some $a' \in A$ such that + $\sup{A} < a' + 1 / (2n)$. + Likewise, there exists some $b' \in B$ such that + $\sup{B} < b' + 1 / (2n)$. + Adding these two inequalities together shows + \begin{align*} + \sup{A} + \sup{B} + & < a' + b' + 1 / n \\ + & \leq \sup{C} + 1 / n. + \end{align*} + + \subparagraph{Conclusion}% + + Applying \nameref{sec:theorem-i.31} to \eqref{par:theorem-i.33a-ii-eq1} + proves $\sup{C} = \sup{A} + \sup{B}$ as expected. \end{proof} -\section*{\proceeding{Theorem I.34}}% +\subsection*{\verified{Theorem I.33b}}% +\hyperlabel{sub:theorem-i.33b}% + +If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and + $$\inf{C} = \inf{A} + \inf{B}.$$ + +\begin{proof} + + \link{inf\_minkowski\_sum\_eq\_inf\_add\_inf} + + \divider + + We prove (i) $\inf{A} + \inf{B}$ is a lower bound of $C$ and (ii) + $\inf{A} + \inf{B}$ is the \textit{greatest} lower bound of $C$. + + \paragraph{(i)}% + \hyperlabel{par:theorem-i.33b-i}% + + Let $x \in C$. + By definition of $C$, there exist elements $a' \in A$ and $b' \in B$ such + that $x = a' + b'$. + By definition of an infimum, $a' \geq \inf{A}$. + Likewise, $b' \geq \inf{B}$. + Therefore $a' + b' \geq \inf{A} + \inf{B}$. + Since $x = a' + b'$ was arbitrarily chosen, it follows $\inf{A} + \inf{B}$ + is a lower bound of $C$. + + \paragraph{(ii)}% + + Since $A$ and $B$ have infimums, $C$ is nonempty. + By \nameref{par:theorem-i.33b-i}, $C$ is bounded below. + Therefore \nameref{sec:theorem-i.27} tells us $C$ has an infimum. + Let $n > 0$ be an integer. + We now prove that + \begin{equation} + \label{par:theorem-i.33b-ii-eq1} + \inf{C} - 1 / n \leq \inf{A} + \inf{B} \leq \inf{C}. + \end{equation} + + \subparagraph{Right-Hand Side}% + + First consider the right-hand side of \eqref{par:theorem-i.33b-ii-eq1}. + By \nameref{par:theorem-i.33b-i}, $\inf{A} + \inf{B}$ is a lower bound of + $C$. + Since $\inf{C}$ is the \textit{greatest} upper bound of $C$, it follows + $\inf{C} \geq \inf{A} + \inf{B}$. + + \subparagraph{Left-Hand Side}% + + Next consider the left-hand side of \eqref{par:theorem-i.33b-ii-eq1}. + By \nameref{sub:theorem-i.32b}, there exists some $a' \in A$ such that + $\inf{A} > a' - 1 / (2n)$. + Likewise, there exists some $b' \in B$ such that + $\inf{B} > b' - 1 / (2n)$. + Adding these two inequalities together shows + \begin{align*} + \inf{A} + \inf{B} + & > a' + b' - 1 / n \\ + & \geq \inf{C} - 1 / n. + \end{align*} + + \subparagraph{Conclusion}% + + Applying \nameref{sec:lemma-2} to \eqref{par:theorem-i.33b-ii-eq1} + proves $\inf{C} = \inf{A} + \inf{B}$ as expected. + +\end{proof} + +\section*{\verified{Theorem I.34}}% \hyperlabel{sec:theorem-i.34}% -Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that -$$s \leq t$$ -for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ -has an infimum, and they satisfy the inequality -$$\sup{S} \leq \inf{T}.$$ +Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that $$s \leq t$$ + for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$ + has an infimum, and they satisfy the inequality $$\sup{S} \leq \inf{T}.$$ \begin{proof} \link{forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf} + \divider + + By hypothesis, $S$ and $T$ are nonempty sets. + Let $s \in S$ and $t \in T$. + Then $t$ is an upper bound of $S$ and $s$ is a lower bound of $T$. + By the completeness axiom, $S$ has a supremum. + By \nameref{sec:theorem-i.27}, $T$ has an infimum. + All that remains is showing $\sup{S} \leq \inf{T}$. + + For the sake of contradiction, suppose $\sup{S} > \inf{T}$. + Then there exists some $c > 0$ such that $\sup{S} = \inf{T} + c$. + Therefore $\inf{T} < \sup{S} - c / 2$. + By \nameref{sub:theorem-i.32a}, there exists some $x \in S$ such that + $\sup{S} - c / 2 < x$. + Thus $$\inf{T} < \sup{S} - c / 2 < x.$$ + But by hypothesis, $x \in S$ is a lower bound of $T$ meaning $x \leq \inf{T}$. + Therefore $x < x$, a contradiction. + Out original assumption is incorrect; that is, $\sup{S} \leq \inf{T}$. + \end{proof} \end{document} diff --git a/preamble.tex b/preamble.tex index 9aecbe7..e1c36a5 100644 --- a/preamble.tex +++ b/preamble.tex @@ -42,7 +42,7 @@ \doublebox{ \begin{minipage}{0.95\textwidth} \vspace{2pt} - \hl{Note}: #1 + \hl{Note:} #1 \vspace{2pt} \end{minipage}} \end{center}}