Enderton, note first half of axioms.
parent
1da6e31581
commit
aaa7052040
|
@ -17,6 +17,32 @@
|
||||||
\chapter{Reference}%
|
\chapter{Reference}%
|
||||||
\label{chap:reference}
|
\label{chap:reference}
|
||||||
|
|
||||||
|
\section{\partial{Empty Set Axiom}}%
|
||||||
|
\label{ref:empty-set-axiom}
|
||||||
|
|
||||||
|
There is a set having no members:
|
||||||
|
$$\exists\; B, \forall\; x, x \not\in B.$$
|
||||||
|
|
||||||
|
\section{\defined{Extensionality Axiom}}%
|
||||||
|
\label{ref:extensionality-axiom}
|
||||||
|
|
||||||
|
If two sets have exactly the same members, then they are equal:
|
||||||
|
$$\forall\; A, \forall\; B,
|
||||||
|
\left[\forall\; x, (x \in A \iff x \in B) \Rightarrow A = B\right].$$
|
||||||
|
|
||||||
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean{Mathlib/Init/Set}{Set.ext}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
|
\section{\partial{Pairing Axiom}}%
|
||||||
|
\label{ref:pairing-axiom}
|
||||||
|
|
||||||
|
For any sets $u$ and $v$, there is a set having as members just $u$ and $v$:
|
||||||
|
$$\forall\; u, \forall\; v, \exists\; B, \forall\; x,
|
||||||
|
(x \in B \iff x = u \text{ or } x = v).$$
|
||||||
|
|
||||||
\section{\defined{Powerset}}%
|
\section{\defined{Powerset}}%
|
||||||
\label{ref:powerset}
|
\label{ref:powerset}
|
||||||
|
|
||||||
|
@ -28,18 +54,19 @@ The \textbf{powerset} of some set $A$ is the set of all subsets of $A$.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\defined{Principle of Extensionality}}%
|
\section{\partial{Power Set Axiom}}%
|
||||||
\label{ref:principle-extensionality}
|
\label{ref:power-set-axiom}
|
||||||
|
|
||||||
If $A$ and $B$ are sets such that for every object $t$,
|
For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
||||||
$$t \in A \quad\text{iff}\quad t \in B,$$
|
$$\forall\; a, \exists\; B, \forall\; x, (x \in B \iff x \subseteq a).$$
|
||||||
then $A = B$.
|
|
||||||
|
|
||||||
\begin{axiom}
|
\section{\partial{Union Axiom, Preliminary Form}}%
|
||||||
|
\label{ref:union-axiom-preliminary-form}
|
||||||
|
|
||||||
\lean{Mathlib/Init/Set}{Set.ext}
|
For any sets $a$ and $b$, there is a set whose members are those sets belonging
|
||||||
|
either to $a$ or to $b$ (or both):
|
||||||
\end{axiom}
|
$$\forall\; a, \forall\; b, \exists\; B, \forall\; x,
|
||||||
|
(x \in B \iff x \in a \text{ or } x \in b).$$
|
||||||
|
|
||||||
\endgroup
|
\endgroup
|
||||||
|
|
||||||
|
@ -160,13 +187,13 @@ Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and
|
||||||
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
||||||
{Enderton.Set.Chapter\_1.exercise\_1\_2}
|
{Enderton.Set.Chapter\_1.exercise\_1\_2}
|
||||||
|
|
||||||
By the \nameref{ref:principle-extensionality}, $\emptyset$ is only equal to
|
By the \nameref{ref:extensionality-axiom}, $\emptyset$ is only equal to
|
||||||
$\emptyset$.
|
$\emptyset$.
|
||||||
This immediately shows it is not equal to the other two.
|
This immediately shows it is not equal to the other two.
|
||||||
Now consider object $\emptyset$.
|
Now consider object $\emptyset$.
|
||||||
This object is a member of $\{\emptyset\}$ but is not a member of
|
This object is a member of $\{\emptyset\}$ but is not a member of
|
||||||
$\{\{\emptyset\}\}$.
|
$\{\{\emptyset\}\}$.
|
||||||
Again, by the \nameref{ref:principle-extensionality}, these two sets must be
|
Again, by the \nameref{ref:extensionality-axiom}, these two sets must be
|
||||||
different.
|
different.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
Loading…
Reference in New Issue