Mathematical Introduction to Logic. Finish proving lemma 0A.
parent
efc6d96903
commit
aa59363e74
|
@ -34,7 +34,7 @@ namespace Tuple
|
||||||
- Coercions
|
- Coercions
|
||||||
- -------------------------------------/
|
- -------------------------------------/
|
||||||
|
|
||||||
scoped instance : CoeOut (Tuple α (min (n + m) n)) (Tuple α n) where
|
scoped instance : CoeOut (Tuple α (min (m + n) m)) (Tuple α m) where
|
||||||
coe := cast (by simp)
|
coe := cast (by simp)
|
||||||
|
|
||||||
scoped instance : Coe (Tuple α 0) (Tuple α (min n 0)) where
|
scoped instance : Coe (Tuple α 0) (Tuple α (min n 0)) where
|
||||||
|
@ -52,7 +52,7 @@ scoped instance : Coe (Tuple α n) (Tuple α (0 + n)) where
|
||||||
scoped instance : Coe (Tuple α (min m n + 1)) (Tuple α (min (m + 1) (n + 1))) where
|
scoped instance : Coe (Tuple α (min m n + 1)) (Tuple α (min (m + 1) (n + 1))) where
|
||||||
coe := cast (by rw [Nat.min_succ_succ])
|
coe := cast (by rw [Nat.min_succ_succ])
|
||||||
|
|
||||||
scoped instance : Coe (Tuple α n) (Tuple α (min (n + m) n)) where
|
scoped instance : Coe (Tuple α m) (Tuple α (min (m + n) m)) where
|
||||||
coe := cast (by simp)
|
coe := cast (by simp)
|
||||||
|
|
||||||
/- -------------------------------------
|
/- -------------------------------------
|
||||||
|
@ -127,7 +127,6 @@ def cons : Tuple α n → α → Tuple α (n + 1)
|
||||||
Join two `Tuple`s together end to end.
|
Join two `Tuple`s together end to end.
|
||||||
-/
|
-/
|
||||||
def concat : Tuple α m → Tuple α n → Tuple α (m + n)
|
def concat : Tuple α m → Tuple α n → Tuple α (m + n)
|
||||||
| t[], ts => ts
|
|
||||||
| is, t[] => is
|
| is, t[] => is
|
||||||
| is, snoc ts t => snoc (concat is ts) t
|
| is, snoc ts t => snoc (concat is ts) t
|
||||||
|
|
||||||
|
@ -143,9 +142,26 @@ theorem self_concat_nil_eq_self (t : Tuple α m) : concat t t[] = t :=
|
||||||
Concatenating `nil` with a `Tuple` yields the `Tuple`.
|
Concatenating `nil` with a `Tuple` yields the `Tuple`.
|
||||||
-/
|
-/
|
||||||
theorem nil_concat_self_eq_self (t : Tuple α m) : concat t[] t = t :=
|
theorem nil_concat_self_eq_self (t : Tuple α m) : concat t[] t = t :=
|
||||||
match t with
|
Tuple.recOn
|
||||||
| t[] => rfl
|
t
|
||||||
| snoc _ _ => rfl
|
(by unfold concat; simp)
|
||||||
|
(@fun n as a ih => by
|
||||||
|
unfold concat
|
||||||
|
rw [ih]
|
||||||
|
suffices HEq (snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a) ↑(snoc as a)
|
||||||
|
from eq_of_heq this
|
||||||
|
have h₁ := Eq.recOn
|
||||||
|
(motive := fun x h => HEq
|
||||||
|
(snoc (cast (show Tuple α n = Tuple α x by rw [h]) as) a)
|
||||||
|
(snoc as a))
|
||||||
|
(show n = 0 + n by simp)
|
||||||
|
HEq.rfl
|
||||||
|
exact Eq.recOn
|
||||||
|
(motive := fun x h => HEq
|
||||||
|
(snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a)
|
||||||
|
(cast h (snoc as a)))
|
||||||
|
(show Tuple α (n + 1) = Tuple α (0 + (n + 1)) by simp)
|
||||||
|
h₁)
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Concatenating a `Tuple` to a nonempty `Tuple` moves `concat` calls closer to
|
Concatenating a `Tuple` to a nonempty `Tuple` moves `concat` calls closer to
|
||||||
|
@ -153,16 +169,7 @@ expression leaves.
|
||||||
-/
|
-/
|
||||||
theorem concat_snoc_snoc_concat {bs : Tuple α n}
|
theorem concat_snoc_snoc_concat {bs : Tuple α n}
|
||||||
: concat as (snoc bs b) = snoc (concat as bs) b :=
|
: concat as (snoc bs b) = snoc (concat as bs) b :=
|
||||||
match as with
|
rfl
|
||||||
| t[] => by
|
|
||||||
unfold concat
|
|
||||||
simp
|
|
||||||
show cast (show Tuple α (n + 1) = Tuple α (0 + (n + 1)) by simp) (snoc bs b)
|
|
||||||
= cast rfl (snoc (cast (show Tuple α n = Tuple α (0 + n) by simp) bs) b)
|
|
||||||
congr
|
|
||||||
all_goals simp
|
|
||||||
exact Eq.recOn (show Tuple α n = Tuple α (0 + n) by simp) (HEq.refl bs)
|
|
||||||
| snoc _ _ => rfl
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
`snoc` is equivalent to concatenating the `init` and `last` element together.
|
`snoc` is equivalent to concatenating the `init` and `last` element together.
|
||||||
|
@ -171,7 +178,7 @@ theorem snoc_eq_init_concat_last (as : Tuple α m) : snoc as a = concat as t[a]
|
||||||
Tuple.casesOn (motive := fun _ t => snoc t a = concat t t[a])
|
Tuple.casesOn (motive := fun _ t => snoc t a = concat t t[a])
|
||||||
as
|
as
|
||||||
rfl
|
rfl
|
||||||
(fun is a' => by simp; unfold concat concat; rfl)
|
(fun _ _ => by simp; unfold concat concat; rfl)
|
||||||
|
|
||||||
/- -------------------------------------
|
/- -------------------------------------
|
||||||
- Initial sequences
|
- Initial sequences
|
||||||
|
|
|
@ -37,41 +37,70 @@ macro_rules
|
||||||
|
|
||||||
namespace XTuple
|
namespace XTuple
|
||||||
|
|
||||||
|
open scoped Tuple
|
||||||
|
|
||||||
|
/- -------------------------------------
|
||||||
|
- Normalization
|
||||||
|
- -------------------------------------/
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Converts an `XTuple` into "normal form".
|
Converts an `XTuple` into "normal form".
|
||||||
-/
|
-/
|
||||||
def norm : XTuple α (m, n) → Tuple α (m + n)
|
def norm : XTuple α (m, n) → Tuple α (m + n)
|
||||||
| x[] => t[]
|
| x[] => t[]
|
||||||
| snoc x[] ts => cast (by simp) ts
|
|
||||||
| snoc is ts => Tuple.concat is.norm ts
|
| snoc is ts => Tuple.concat is.norm ts
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Casts a tuple indexed by `m` to one indexed by `n`.
|
Normalization of an empty `XTuple` yields an empty `Tuple`.
|
||||||
-/
|
-/
|
||||||
theorem lift_eq_size : (m = n) → (Tuple α m = Tuple α n) :=
|
theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil :=
|
||||||
fun h => by rw [h]
|
rfl
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Normalization distributes when the `snd` component is `nil`.
|
Normalization of a pseudo-empty `XTuple` yields an empty `Tuple`.
|
||||||
-/
|
-/
|
||||||
theorem distrib_norm_snoc_nil {t : XTuple α (p, q)}
|
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc x[] t[]) = t[] := by
|
||||||
|
unfold norm norm
|
||||||
|
rfl
|
||||||
|
|
||||||
|
/--
|
||||||
|
Normalization elimates `snoc` when the `snd` component is `nil`.
|
||||||
|
-/
|
||||||
|
theorem norm_snoc_nil_elim {t : XTuple α (p, q)}
|
||||||
: norm (snoc t t[]) = norm t :=
|
: norm (snoc t t[]) = norm t :=
|
||||||
sorry
|
XTuple.casesOn t
|
||||||
|
(motive := fun _ t => norm (snoc t t[]) = norm t)
|
||||||
|
(by simp; unfold norm norm; rfl)
|
||||||
|
(fun tf tl => by
|
||||||
|
simp
|
||||||
|
conv => lhs; unfold norm)
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Normalizing an `XTuple` is equivalent to concatenating the `fst` component (in
|
Normalization eliminates `snoc` when the `fst` component is `nil`.
|
||||||
normal form) with the second.
|
-/
|
||||||
|
theorem norm_nil_snoc_elim {ts : Tuple α n} : norm (snoc x[] ts) = cast (by simp) ts := by
|
||||||
|
unfold norm norm
|
||||||
|
rw [Tuple.nil_concat_self_eq_self]
|
||||||
|
|
||||||
|
/--
|
||||||
|
Normalization distributes across `Tuple.snoc` calls.
|
||||||
|
-/
|
||||||
|
theorem norm_snoc_snoc_norm
|
||||||
|
: norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by
|
||||||
|
unfold norm
|
||||||
|
rw [←Tuple.concat_snoc_snoc_concat]
|
||||||
|
|
||||||
|
/--
|
||||||
|
Normalizing an `XTuple` is equivalent to concatenating the normalized `fst`
|
||||||
|
component with the `snd`.
|
||||||
-/
|
-/
|
||||||
theorem norm_snoc_eq_concat {t₁ : XTuple α (p, q)} {t₂ : Tuple α n}
|
theorem norm_snoc_eq_concat {t₁ : XTuple α (p, q)} {t₂ : Tuple α n}
|
||||||
: norm (snoc t₁ t₂) = t₁.norm.concat t₂ :=
|
: norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by
|
||||||
Tuple.recOn
|
conv => lhs; unfold norm
|
||||||
(motive := fun k t => norm (snoc t₁ t) = t₁.norm.concat t)
|
|
||||||
t₂
|
/- -------------------------------------
|
||||||
(calc
|
- Equality
|
||||||
norm (snoc t₁ t[])
|
- -------------------------------------/
|
||||||
= t₁.norm := distrib_norm_snoc_nil
|
|
||||||
_ = t₁.norm.concat t[] := by rw [Tuple.self_concat_nil_eq_self])
|
|
||||||
(sorry)
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Implements Boolean equality for `XTuple α n` provided `α` has decidable
|
Implements Boolean equality for `XTuple α n` provided `α` has decidable
|
||||||
|
@ -80,6 +109,10 @@ equality.
|
||||||
instance BEq [DecidableEq α] : BEq (XTuple α n) where
|
instance BEq [DecidableEq α] : BEq (XTuple α n) where
|
||||||
beq t₁ t₂ := t₁.norm == t₂.norm
|
beq t₁ t₂ := t₁.norm == t₂.norm
|
||||||
|
|
||||||
|
/- -------------------------------------
|
||||||
|
- Basic API
|
||||||
|
- -------------------------------------/
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Returns the number of entries in the `XTuple`.
|
Returns the number of entries in the `XTuple`.
|
||||||
-/
|
-/
|
||||||
|
@ -106,22 +139,22 @@ def fst : XTuple α (m, n) → Tuple α m
|
||||||
Given `XTuple α (m, n)`, the `fst` component is equal to an initial segment of
|
Given `XTuple α (m, n)`, the `fst` component is equal to an initial segment of
|
||||||
size `k` of the tuple in normal form.
|
size `k` of the tuple in normal form.
|
||||||
-/
|
-/
|
||||||
theorem self_fst_eq_norm_take (t : XTuple α (m, n))
|
theorem self_fst_eq_norm_take (t : XTuple α (m, n)) : t.fst = t.norm.take m :=
|
||||||
: cast (by simp) (t.norm.take m) = t.fst :=
|
match t with
|
||||||
XTuple.casesOn
|
| x[] => by unfold fst; rw [Tuple.self_take_zero_eq_nil]; simp
|
||||||
(motive := fun (m, n) t => cast (by simp) (t.norm.take m) = t.fst)
|
| snoc tf tl => by
|
||||||
t
|
unfold fst
|
||||||
rfl
|
conv => rhs; unfold norm
|
||||||
(@fun p q r t₁ t₂ => sorry)
|
rw [Tuple.eq_take_concat]
|
||||||
|
simp
|
||||||
|
|
||||||
/--
|
/--
|
||||||
If the normal form of our `XTuple` is the same as another `Tuple`, the `fst`
|
If the normal form of an `XTuple` is equal to a `Tuple`, the `fst` component
|
||||||
component must be a prefix of the second.
|
must be a prefix of the `Tuple`.
|
||||||
-/
|
-/
|
||||||
theorem norm_eq_fst_eq_take {t₁ : XTuple α (m, n)} {t₂ : Tuple α (m + n)}
|
theorem norm_eq_fst_eq_take {t₁ : XTuple α (m, n)} {t₂ : Tuple α (m + n)}
|
||||||
: (t₁.norm = t₂) → cast (by simp) (t₂.take m) = t₁.fst := by
|
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) :=
|
||||||
intro h
|
fun h => by rw [self_fst_eq_norm_take, h]
|
||||||
sorry
|
|
||||||
|
|
||||||
/--
|
/--
|
||||||
Returns the first component of our `XTuple`. For example, the first component of
|
Returns the first component of our `XTuple`. For example, the first component of
|
||||||
|
@ -131,6 +164,10 @@ def snd : XTuple α (m, n) → Tuple α n
|
||||||
| x[] => t[]
|
| x[] => t[]
|
||||||
| snoc _ ts => ts
|
| snoc _ ts => ts
|
||||||
|
|
||||||
|
/- -------------------------------------
|
||||||
|
- Lemma 0A
|
||||||
|
- -------------------------------------/
|
||||||
|
|
||||||
section
|
section
|
||||||
|
|
||||||
variable {k m n : Nat}
|
variable {k m n : Nat}
|
||||||
|
@ -152,6 +189,16 @@ lemma n_eq_succ_k : n = k + 1 :=
|
||||||
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
|
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
|
||||||
_ = 1 + k := by simp
|
_ = 1 + k := by simp
|
||||||
_ = k + 1 := by rw [Nat.add_comm]
|
_ = k + 1 := by rw [Nat.add_comm]
|
||||||
|
|
||||||
|
lemma n_pred_eq_k : n - 1 = k := by
|
||||||
|
have h : k + 1 - 1 = k + 1 - 1 := rfl
|
||||||
|
conv at h => lhs; rw [←n_eq_succ_k p q]
|
||||||
|
simp at h
|
||||||
|
exact h
|
||||||
|
|
||||||
|
lemma n_geq_one : 1 ≤ n := by
|
||||||
|
rw [n_eq_succ_k p q]
|
||||||
|
simp
|
||||||
|
|
||||||
lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
|
lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
|
||||||
Nat.recOn k
|
Nat.recOn k
|
||||||
|
@ -162,16 +209,22 @@ lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
|
||||||
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
|
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
|
||||||
_ = k' + 1 + 1 := by rw [ih])
|
_ = k' + 1 + 1 := by rw [ih])
|
||||||
|
|
||||||
-- TODO: Consider using coercions and heterogeneous equality isntead of these.
|
lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by
|
||||||
|
rw [min_comm_succ_eq p]
|
||||||
|
exact n_eq_succ_k p q
|
||||||
|
|
||||||
|
lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by
|
||||||
|
rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)]
|
||||||
|
conv => lhs; rw [n_pred_eq_k p q]
|
||||||
|
|
||||||
def cast_norm : XTuple α (n, m - 1) → Tuple α (m + k)
|
def cast_norm : XTuple α (n, m - 1) → Tuple α (m + k)
|
||||||
| xs => cast (lift_eq_size q) xs.norm
|
| xs => cast (by rw [q]) xs.norm
|
||||||
|
|
||||||
def cast_fst : XTuple α (n, m - 1) → Tuple α (k + 1)
|
def cast_fst : XTuple α (n, m - 1) → Tuple α (k + 1)
|
||||||
| xs => cast (lift_eq_size (n_eq_succ_k p q)) xs.fst
|
| xs => cast (by rw [n_eq_succ_k p q]) xs.fst
|
||||||
|
|
||||||
def cast_init_seq (ys : Tuple α (m + k)) :=
|
def cast_take (ys : Tuple α (m + k)) :=
|
||||||
cast (lift_eq_size (min_comm_succ_eq p)) (ys.take (k + 1))
|
cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1))
|
||||||
|
|
||||||
end Lemma_0a
|
end Lemma_0a
|
||||||
|
|
||||||
|
@ -181,8 +234,44 @@ open Lemma_0a
|
||||||
Assume that ⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩. Then x₁ = ⟨y₁, ..., yₖ₊₁⟩.
|
Assume that ⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩. Then x₁ = ⟨y₁, ..., yₖ₊₁⟩.
|
||||||
-/
|
-/
|
||||||
theorem lemma_0a (xs : XTuple α (n, m - 1)) (ys : Tuple α (m + k))
|
theorem lemma_0a (xs : XTuple α (n, m - 1)) (ys : Tuple α (m + k))
|
||||||
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_init_seq p ys) :=
|
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by
|
||||||
fun h => sorry
|
intro h
|
||||||
|
suffices HEq
|
||||||
|
(cast (_ : Tuple α n = Tuple α (k + 1)) (fst xs))
|
||||||
|
(cast (_ : Tuple α (min (m + k) (k + 1)) = Tuple α (k + 1)) (Tuple.take ys (k + 1)))
|
||||||
|
from eq_of_heq this
|
||||||
|
congr
|
||||||
|
· exact n_eq_min_comm_succ p q
|
||||||
|
· rfl
|
||||||
|
· exact n_eq_min_comm_succ p q
|
||||||
|
· exact HEq.rfl
|
||||||
|
· exact Eq.recOn
|
||||||
|
(motive := fun _ h => HEq
|
||||||
|
(_ : n + (n - 1) = n + k)
|
||||||
|
(cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q])))
|
||||||
|
(show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by
|
||||||
|
rw [n_eq_min_comm_succ p q])
|
||||||
|
HEq.rfl
|
||||||
|
· exact n_geq_one p q
|
||||||
|
· exact n_pred_eq_k p q
|
||||||
|
· exact Eq.symm (n_eq_min_comm_succ p q)
|
||||||
|
· exact n_pred_eq_k p q
|
||||||
|
· rw [self_fst_eq_norm_take]
|
||||||
|
unfold cast_norm at h
|
||||||
|
simp at h
|
||||||
|
rw [←h, ←n_eq_succ_k p q]
|
||||||
|
have h₂ := Eq.recOn
|
||||||
|
(motive := fun x h => HEq
|
||||||
|
(Tuple.take xs.norm n)
|
||||||
|
(Tuple.take (cast (show Tuple α (n + (m - 1)) = Tuple α x by rw [h]) xs.norm) n))
|
||||||
|
(show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q])
|
||||||
|
HEq.rfl
|
||||||
|
exact Eq.recOn
|
||||||
|
(motive := fun x h => HEq
|
||||||
|
(cast h (Tuple.take xs.norm n))
|
||||||
|
(Tuple.take (cast (_ : Tuple α (n + (m - 1)) = Tuple α (m + k)) xs.norm) n))
|
||||||
|
(show Tuple α (min (n + (m - 1)) n) = Tuple α n by simp)
|
||||||
|
h₂
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue