Clean up unused/not to be proven.
parent
fcbd510dbe
commit
a8f12f2ec0
|
@ -1,98 +0,0 @@
|
||||||
/-
|
|
||||||
Exercises 1.7
|
|
||||||
-/
|
|
||||||
import OneVariableCalculus.Real.Geometry.Area
|
|
||||||
import OneVariableCalculus.Real.Geometry.Rectangle
|
|
||||||
|
|
||||||
open Real
|
|
||||||
open Real.Geometry.Area
|
|
||||||
|
|
||||||
-- ========================================
|
|
||||||
-- The properties of area in this set of exercises are to be deduced from the
|
|
||||||
-- axioms for area stated in the foregoing section.
|
|
||||||
-- ========================================
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
|
||||||
-- Exercise 1
|
|
||||||
--
|
|
||||||
-- Prove that each of the following sets is measurable and has zero area:
|
|
||||||
-- (a) A set consisting of a single point.
|
|
||||||
-- (b) A set consisting of a finite number of points in a plane.
|
|
||||||
-- (c) The union of a finite collection of line segments in a plane.
|
|
||||||
-- ----------------------------------------
|
|
||||||
|
|
||||||
example (p : Point)
|
|
||||||
: p.set_def ∈ 𝓜
|
|
||||||
∧ ((h : p.set_def ∈ 𝓜) → area h = 0) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
example (S : Set Point) (hf : Set.Finite S)
|
|
||||||
: (⋃ p ∈ S, p.set_def) ∈ 𝓜
|
|
||||||
∧ ((h : (⋃ p ∈ S, p.set_def) ∈ 𝓜) → area h = 0) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
example (S : Set LineSegment) (hf : Set.Finite S)
|
|
||||||
: (⋃ s ∈ S, s.set_def) ∈ 𝓜
|
|
||||||
∧ ((h : (⋃ s ∈ S, s.set_def) ∈ 𝓜) → area h = 0) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
|
||||||
-- Exercise 2
|
|
||||||
--
|
|
||||||
-- Every right triangular region is measurable because it can be obtained as the
|
|
||||||
-- intersection of two rectangles. Prove that every triangular region is
|
|
||||||
-- measurable and that its area is one half the product of its base and
|
|
||||||
-- altitude.
|
|
||||||
-- ----------------------------------------
|
|
||||||
|
|
||||||
-- # TODO
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
|
||||||
-- Exercise 3
|
|
||||||
--
|
|
||||||
-- Prove that every trapezoid and every parallelogram is measurable and derive
|
|
||||||
-- the usual formulas for their areas.
|
|
||||||
-- ----------------------------------------
|
|
||||||
|
|
||||||
-- # TODO
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
|
||||||
-- Exercise 4
|
|
||||||
--
|
|
||||||
-- A point `(x, y)` in the plane is called a *lattice point* if both coordinates
|
|
||||||
-- `x` and `y` are integers. Let `P` be a polygon whose vertices are lattice
|
|
||||||
-- points inside the polygon and `B` denotes the number on the boundary.
|
|
||||||
--
|
|
||||||
-- (a) Prove that the formula is valid for rectangles with sides parallel to the
|
|
||||||
-- coordinate axes.
|
|
||||||
-- (b) Prove that the formula is valid for right triangles and parallelograms.
|
|
||||||
-- (c) Use induction on the number of edges to construct a proof for general
|
|
||||||
-- polygons.
|
|
||||||
-- ----------------------------------------
|
|
||||||
|
|
||||||
-- # TODO
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
|
||||||
-- Exercise 5
|
|
||||||
--
|
|
||||||
-- Prove that a triangle whose vertices are lattice points cannot be
|
|
||||||
-- equilateral.
|
|
||||||
--
|
|
||||||
-- [Hint: Assume there is such a triangle and compute its area in two ways,
|
|
||||||
-- using exercises 2 and 4.]
|
|
||||||
-- ----------------------------------------
|
|
||||||
|
|
||||||
-- # TODO
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
|
||||||
-- Exercise 6
|
|
||||||
--
|
|
||||||
-- Let `A = {1, 2, 3, 4, 5}`, and let `𝓜` denote the class of all subsets of
|
|
||||||
-- `A`. (There are `32` altogether, counting `A` itself and the empty set `∅`.)
|
|
||||||
-- For each set `S` in `𝓜`, let `n(S)` denote the number of distinct elements in
|
|
||||||
-- `S`. If `S = {1, 2, 3, 4}` and `T = {3, 4, 5}`, compute `n(S ∪ T)`,
|
|
||||||
-- `n(S ∩ T)`, `n(S - T)`, and `n(T - S)`. Prove that the set function `n`
|
|
||||||
-- satisfies the first three axioms for area.
|
|
||||||
-- ----------------------------------------
|
|
||||||
|
|
||||||
-- # TODO
|
|
|
@ -19,7 +19,7 @@ import OneVariableCalculus.Apostol.Chapter_I_3
|
||||||
-- at least one real `z` satisfying `x < z < y`.
|
-- at least one real `z` satisfying `x < z < y`.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
theorem exercise1 (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
||||||
have ⟨z, hz⟩ := exists_pos_add_of_lt' h
|
have ⟨z, hz⟩ := exists_pos_add_of_lt' h
|
||||||
refine ⟨x + z / 2, ⟨?_, ?_⟩⟩
|
refine ⟨x + z / 2, ⟨?_, ?_⟩⟩
|
||||||
· have hz' : z / 2 > 0 := by
|
· have hz' : z / 2 > 0 := by
|
||||||
|
@ -38,7 +38,7 @@ example (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
||||||
-- such that `m < x < n`.
|
-- such that `m < x < n`.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
theorem exercise2 (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
||||||
refine ⟨x - 1, ⟨x + 1, ⟨?_, ?_⟩⟩⟩ <;> norm_num
|
refine ⟨x - 1, ⟨x + 1, ⟨?_, ?_⟩⟩⟩ <;> norm_num
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
@ -47,7 +47,7 @@ example (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
||||||
-- If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
-- If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
theorem exercise3 (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
||||||
have ⟨n, hn⟩ := @Real.exists_pnat_mul_self_geq_of_pos x 1 h
|
have ⟨n, hn⟩ := @Real.exists_pnat_mul_self_geq_of_pos x 1 h
|
||||||
refine ⟨n, ?_⟩
|
refine ⟨n, ?_⟩
|
||||||
have hr := mul_lt_mul_of_pos_right hn (show 0 < 1 / ↑↑n by norm_num)
|
have hr := mul_lt_mul_of_pos_right hn (show 0 < 1 / ↑↑n by norm_num)
|
||||||
|
@ -63,7 +63,7 @@ example (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
||||||
-- `⌊5 / 2⌋ = 2`, `⌊-8/3⌋ = -3`.
|
-- `⌊5 / 2⌋ = 2`, `⌊-8/3⌋ = -3`.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
theorem exercise4 (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
||||||
let n := Int.floor x
|
let n := Int.floor x
|
||||||
refine ⟨n, ⟨?_, ?_⟩⟩
|
refine ⟨n, ⟨?_, ?_⟩⟩
|
||||||
· exact ⟨Int.floor_le x, Int.lt_floor_add_one x⟩
|
· exact ⟨Int.floor_le x, Int.lt_floor_add_one x⟩
|
||||||
|
@ -78,7 +78,7 @@ example (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
||||||
-- `n` which satisfies `x ≤ n < x + 1`.
|
-- `n` which satisfies `x ≤ n < x + 1`.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
theorem exercise5 (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
||||||
let n := Int.ceil x
|
let n := Int.ceil x
|
||||||
refine ⟨n, ⟨?_, ?_⟩⟩
|
refine ⟨n, ⟨?_, ?_⟩⟩
|
||||||
· exact ⟨Int.le_ceil x, Int.ceil_lt_add_one x⟩
|
· exact ⟨Int.le_ceil x, Int.ceil_lt_add_one x⟩
|
||||||
|
@ -101,8 +101,7 @@ example (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
||||||
-- are *dense* in the real-number system.
|
-- are *dense* in the real-number system.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x y : ℝ) (h : x < y) : ∃ r : ℚ, x < r ∧ r < y := by
|
-- # TODO
|
||||||
sorry
|
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
-- Exercise 7
|
-- Exercise 7
|
||||||
|
@ -111,25 +110,7 @@ example (x y : ℝ) (h : x < y) : ∃ r : ℚ, x < r ∧ r < y := by
|
||||||
-- `xy`, `x / y`, and `y / x` are all irrational.
|
-- `xy`, `x / y`, and `y / x` are all irrational.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
-- # TODO
|
||||||
: irrational (x + y) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
|
||||||
: irrational (x - y) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
|
||||||
: irrational (x * y) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
|
||||||
: y ≠ 0 → irrational (x / y) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
|
||||||
: irrational (y / x) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
-- Exercise 8
|
-- Exercise 8
|
||||||
|
@ -137,10 +118,7 @@ example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
||||||
-- Is the sum or product of two irrational numbers always irrational?
|
-- Is the sum or product of two irrational numbers always irrational?
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
-- No. Here is a counterexample.
|
-- # TODO
|
||||||
|
|
||||||
example (hx : x = Real.sqrt 2): irrational x ∧ rational (x * x) := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
-- Exercise 9
|
-- Exercise 9
|
||||||
|
@ -150,8 +128,7 @@ example (hx : x = Real.sqrt 2): irrational x ∧ rational (x * x) := by
|
||||||
-- infinitely many.
|
-- infinitely many.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example (x y : ℝ) (h : x < y) : ∃ z : ℝ, irrational z ∧ x < z ∧ z < y := by
|
-- # TODO
|
||||||
sorry
|
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
-- Exercise 10
|
-- Exercise 10
|
||||||
|
@ -171,34 +148,27 @@ def is_odd (n : ℤ) := is_even (n + 1)
|
||||||
-- (a) An integer cannot be both even and odd.
|
-- (a) An integer cannot be both even and odd.
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
|
|
||||||
example (n : ℤ) : is_even n = ¬ is_odd n := sorry
|
-- # TODO
|
||||||
|
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
-- (b) Every integer is either even or odd.
|
-- (b) Every integer is either even or odd.
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
|
|
||||||
example (n : ℤ) : is_even n ∨ is_odd n := sorry
|
-- # TODO
|
||||||
|
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
-- (c) The sum or product of two even integers is even. What can you say about
|
-- (c) The sum or product of two even integers is even. What can you say about
|
||||||
-- the sum or product of two odd integers?
|
-- the sum or product of two odd integers?
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
|
|
||||||
example (m n : ℤ) : is_even m ∧ is_even n → is_even (m * n) := sorry
|
-- # TODO
|
||||||
|
|
||||||
example (m n : ℤ) :
|
|
||||||
(∃ m n : ℤ, is_odd m ∧ is_odd n ∧ is_even (m * n)) ∧
|
|
||||||
(∃ m n : ℤ, is_odd m ∧ is_odd n ∧ is_odd (m * n)) :=
|
|
||||||
sorry
|
|
||||||
|
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
-- (d) If `n²` is even, so is `n`. If `a² = 2b²`, where `a` and `b` are
|
-- (d) If `n²` is even, so is `n`. If `a² = 2b²`, where `a` and `b` are
|
||||||
-- integers, then both `a` and `b` are even.
|
-- integers, then both `a` and `b` are even.
|
||||||
-- ----------------------------------------
|
-- ----------------------------------------
|
||||||
|
|
||||||
example (n : ℤ) (h : is_even (n ^ 2)) : is_even n := sorry
|
-- # TODO
|
||||||
|
|
||||||
example (a b : ℤ) (h : a ^ 2 = 2 * b ^ 2) : is_even a ∧ is_even b := sorry
|
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
-- Exercise 11
|
-- Exercise 11
|
||||||
|
@ -210,7 +180,7 @@ example (a b : ℤ) (h : a ^ 2 = 2 * b ^ 2) : is_even a ∧ is_even b := sorry
|
||||||
-- contradiction.]
|
-- contradiction.]
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
example : ¬ ∃ n : ℝ, rational n → n ^ 2 = 2 := sorry
|
-- # TODO
|
||||||
|
|
||||||
-- ========================================
|
-- ========================================
|
||||||
-- Exercise 12
|
-- Exercise 12
|
||||||
|
@ -222,15 +192,4 @@ example : ¬ ∃ n : ℝ, rational n → n ^ 2 = 2 := sorry
|
||||||
-- least-upper-bound axiom.
|
-- least-upper-bound axiom.
|
||||||
-- ========================================
|
-- ========================================
|
||||||
|
|
||||||
/--
|
-- # TODO
|
||||||
Shows the set of rational numbers satisfies the Archimedean property.
|
|
||||||
-/
|
|
||||||
theorem exists_pnat_mul_self_geq_of_pos {x y : ℚ}
|
|
||||||
: x > 0 → ∃ n : ℕ+, n * x > y := sorry
|
|
||||||
|
|
||||||
/--
|
|
||||||
Show the Archimedean property does not imply the least-upper-bound axiom.
|
|
||||||
-/
|
|
||||||
example (S : Set ℚ) (hne : S.Nonempty) (hbdd : BddAbove S)
|
|
||||||
: ¬ ∃ x, IsLUB S x :=
|
|
||||||
sorry
|
|
||||||
|
|
Loading…
Reference in New Issue