Enderton (set). Chapter 4 exercises.
parent
21a3e78106
commit
a4cecbffd8
|
@ -8030,14 +8030,50 @@
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 4.20}}%
|
\subsection{\unverified{Exercise 4.20}}%
|
||||||
\hyperlabel{sub:exercise-4.20}
|
\hyperlabel{sub:exercise-4.20}
|
||||||
|
|
||||||
Let $A$ be a nonempty subset of $\omega$ such that $\bigcup A = A$.
|
Let $A$ be a nonempty subset of $\omega$ such that $\bigcup A = A$.
|
||||||
Show that $A = \omega$.
|
Show that $A = \omega$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
For the sake of contradiction, suppose $\omega - A$ is nonempty.
|
||||||
|
By \nameref{sub:well-ordering-natural-numbers}, there exists a least number
|
||||||
|
$m \in \omega$ of the set.
|
||||||
|
|
||||||
|
Let $n \in \omega$ such that $n > m$.
|
||||||
|
By \nameref{sub:members-natural-numbers}, $n$ is the set of all smaller
|
||||||
|
natural numbers.
|
||||||
|
Thus $m \in n$.
|
||||||
|
Therefore $n \not\in A$ since otherwise $m \in \bigcup A$ but $m \not\in A$.
|
||||||
|
Hence $\omega - A$ consists of all numbers greater than or equal to $m$.
|
||||||
|
|
||||||
|
There are now two cases to consider:
|
||||||
|
|
||||||
|
\paragraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $m = 0$.
|
||||||
|
Then $A = \emptyset$ by \nameref{sub:zero-least-natural-number}.
|
||||||
|
$A$ is assumed nonempty so this is a contradiction.
|
||||||
|
|
||||||
|
\paragraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $m \neq 0$.
|
||||||
|
Then \nameref{sub:theorem-4c} implies there exists some $p \in \omega$
|
||||||
|
such that $p^+ = m$.
|
||||||
|
Because $m$ is the least element of $\omega - A$, it follows $p \in A$ is
|
||||||
|
the largest element of $A$.
|
||||||
|
But since $p \not\in p$ by \nameref{sub:lemma-4l-b},
|
||||||
|
$p \not\in \bigcup A$, a contradiction.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
Our above two cases are exhaustive.
|
||||||
|
Since both lead to contradictions, it follows our original assumption
|
||||||
|
must be wrong.
|
||||||
|
That is $\omega - A$ is empty, meaning $A = \omega$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\unverified{Exercise 4.21}}%
|
\subsection{\unverified{Exercise 4.21}}%
|
||||||
|
@ -8184,25 +8220,65 @@
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 4.25}}%
|
\subsection{\verified{Exercise 4.25}}%
|
||||||
\hyperlabel{sub:exercise-4.25}
|
\hyperlabel{sub:exercise-4.25}
|
||||||
|
|
||||||
Assume that $n \in m$ and $q \in p$.
|
Assume that $n \in m$ and $q \in p$.
|
||||||
Show that $$(m \cdot q) + (n \cdot p) \in (m \cdot p) + (n \cdot q).$$
|
Show that $$(m \cdot q) + (n \cdot p) \in (m \cdot p) + (n \cdot q).$$
|
||||||
[\textit{Suggestion:} Use \nameref{sub:exercise-4.23}.]
|
[\textit{Suggestion:} Use \nameref{sub:exercise-4.23}.]
|
||||||
|
|
||||||
|
\code*{Bookshelf/Enderton/Set/Chapter\_4}
|
||||||
|
{Enderton.Set.Chapter\_4.exercise\_4\_25}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Let $n \in m$ and $q \in p$.
|
||||||
|
By \nameref{sub:exercise-4.23}, there exists some $r \in \omega$ such that
|
||||||
|
$q + r^+ = p$.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
& \qquad\quad n \in m \\
|
||||||
|
& \iff n \cdot r^+ \in m \cdot r^+ & \textref{sub:theorem-4n} \\
|
||||||
|
& \iff (n \cdot r^+) + ((m \cdot q) + (n \cdot q))
|
||||||
|
& \textref{sub:theorem-4n} \\
|
||||||
|
& \qquad\qquad \in (m \cdot r^+) + ((m \cdot q) + (n \cdot q)) \\
|
||||||
|
& \iff ((m \cdot q) + (n \cdot q)) + (n \cdot r^+)
|
||||||
|
& \textref{sub:theorem-4k-2} \\
|
||||||
|
& \qquad\qquad \in ((m \cdot q) + (n \cdot q)) + (m \cdot r^+) \\
|
||||||
|
& \iff (m \cdot q) + ((n \cdot q) + (n \cdot r^+))
|
||||||
|
& \textref{sub:theorem-4k-1} \\
|
||||||
|
& \qquad\qquad \in ((m \cdot q) + (n \cdot q)) + (m \cdot r^+) \\
|
||||||
|
& \iff (m \cdot q) + ((n \cdot q) + (n \cdot r^+))
|
||||||
|
& \textref{sub:theorem-4k-2} \\
|
||||||
|
& \qquad\qquad \in ((n \cdot q) + (m \cdot q)) + (m \cdot r^+) \\
|
||||||
|
& \iff (m \cdot q) + ((n \cdot q) + (n \cdot r^+))
|
||||||
|
& \textref{sub:theorem-4k-1} \\
|
||||||
|
& \qquad\qquad \in (n \cdot q) + ((m \cdot q) + (m \cdot r^+)) \\
|
||||||
|
& \iff (m \cdot q) + (n \cdot (q + r^+))
|
||||||
|
& \textref{sub:theorem-4k-3} \\
|
||||||
|
& \qquad\qquad \in (n \cdot q) + (m \cdot (q + r^+)) \\
|
||||||
|
& \iff (m \cdot q) + (n \cdot p) \in (n \cdot q) + (m \cdot p) \\
|
||||||
|
& \iff (m \cdot q) + (n \cdot p) \in (m \cdot p) + (n \cdot q).
|
||||||
|
& \textref{sub:theorem-4k-2}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 4.26}}%
|
\subsection{\unverified{Exercise 4.26}}%
|
||||||
\hyperlabel{sub:exercise-4.26}
|
\hyperlabel{sub:exercise-4.26}
|
||||||
|
|
||||||
Assume that $n \in \omega$ and $f \colon n^+ \rightarrow \omega$.
|
Assume that $n \in \omega$ and $f \colon n^+ \rightarrow \omega$.
|
||||||
Show that $\ran{f}$ has a largest element.
|
Show that $\ran{f}$ has a largest element.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
By construction, the \nameref{ref:domain} of $f$ is finite.
|
||||||
|
Therefore $\abs{\ran{f}} \leq \abs{\dom{f}}$, i.e. $\ran{f}$ is also a
|
||||||
|
finite set.
|
||||||
|
By the \nameref{sub:trichotomy-law-natural-numbers}, every member of
|
||||||
|
$\ran{f}$ relates to one another.
|
||||||
|
Thus there must exist a largest element.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 4.27}}%
|
\subsection{\sorry{Exercise 4.27}}%
|
||||||
|
|
|
@ -82,7 +82,7 @@ Associatve law for addition. For `m, n, p ∈ ω`,
|
||||||
m + (n + p) = (m + n) + p.
|
m + (n + p) = (m + n) + p.
|
||||||
```
|
```
|
||||||
-/
|
-/
|
||||||
theorem theorem_4k_1 (m n p : ℕ)
|
theorem theorem_4k_1 {m n p : ℕ}
|
||||||
: m + (n + p) = (m + n) + p := by
|
: m + (n + p) = (m + n) + p := by
|
||||||
induction m with
|
induction m with
|
||||||
| zero => simp
|
| zero => simp
|
||||||
|
@ -617,7 +617,7 @@ Assume that `m` and `n` are natural numbers with `m` less than `n`. Show that
|
||||||
there is some `p` in `ω` for which `m + p⁺ = n`. (It follows from this and the
|
there is some `p` in `ω` for which `m + p⁺ = n`. (It follows from this and the
|
||||||
preceding exercise that `m` is less than `n` iff (`∃p ∈ ω) m + p⁺ = n`.)
|
preceding exercise that `m` is less than `n` iff (`∃p ∈ ω) m + p⁺ = n`.)
|
||||||
-/
|
-/
|
||||||
theorem exercise_4_23 (m n : ℕ) (hm : m < n)
|
theorem exercise_4_23 {m n : ℕ} (hm : m < n)
|
||||||
: ∃ p : ℕ, m + p.succ = n := by
|
: ∃ p : ℕ, m + p.succ = n := by
|
||||||
induction n with
|
induction n with
|
||||||
| zero => simp at hm
|
| zero => simp at hm
|
||||||
|
@ -668,6 +668,20 @@ Assume that `n ∈ m` and `q ∈ p`. Show that
|
||||||
-/
|
-/
|
||||||
theorem exercise_4_25 (m n p q : ℕ) (h₁ : n < m) (h₂ : q < p)
|
theorem exercise_4_25 (m n p q : ℕ) (h₁ : n < m) (h₂ : q < p)
|
||||||
: (m * q) + (n * p) < (m * p) + (n * q) := by
|
: (m * q) + (n * p) < (m * p) + (n * q) := by
|
||||||
sorry
|
have ⟨r, hr⟩ : ∃ r : ℕ, q + r.succ = p := exercise_4_23 h₂
|
||||||
|
rw [
|
||||||
|
theorem_4n_ii n m r,
|
||||||
|
theorem_4n_i (n * r.succ) (m * r.succ) ((m * q) + (n * q))
|
||||||
|
] at h₁
|
||||||
|
conv at h₁ => left; rw [theorem_4k_2, ← theorem_4k_1]
|
||||||
|
conv at h₁ => right; rw [theorem_4k_2]; arg 1; rw [theorem_4k_2]
|
||||||
|
conv at h₁ => right; rw [← theorem_4k_1]
|
||||||
|
rw [
|
||||||
|
← theorem_4k_3 n q r.succ,
|
||||||
|
← theorem_4k_3 m q r.succ,
|
||||||
|
hr
|
||||||
|
] at h₁
|
||||||
|
conv at h₁ => right; rw [add_comm]
|
||||||
|
exact h₁
|
||||||
|
|
||||||
end Enderton.Set.Chapter_4
|
end Enderton.Set.Chapter_4
|
Loading…
Reference in New Issue