Enderton (set). Chapter 4 exercises.

finite-set-exercises
Joshua Potter 2023-08-12 12:54:22 -06:00
parent 21a3e78106
commit a4cecbffd8
2 changed files with 99 additions and 9 deletions

View File

@ -8030,14 +8030,50 @@
\end{proof}
\subsection{\sorry{Exercise 4.20}}%
\subsection{\unverified{Exercise 4.20}}%
\hyperlabel{sub:exercise-4.20}
Let $A$ be a nonempty subset of $\omega$ such that $\bigcup A = A$.
Show that $A = \omega$.
\begin{proof}
TODO
For the sake of contradiction, suppose $\omega - A$ is nonempty.
By \nameref{sub:well-ordering-natural-numbers}, there exists a least number
$m \in \omega$ of the set.
Let $n \in \omega$ such that $n > m$.
By \nameref{sub:members-natural-numbers}, $n$ is the set of all smaller
natural numbers.
Thus $m \in n$.
Therefore $n \not\in A$ since otherwise $m \in \bigcup A$ but $m \not\in A$.
Hence $\omega - A$ consists of all numbers greater than or equal to $m$.
There are now two cases to consider:
\paragraph{Case 1}%
Suppose $m = 0$.
Then $A = \emptyset$ by \nameref{sub:zero-least-natural-number}.
$A$ is assumed nonempty so this is a contradiction.
\paragraph{Case 2}%
Suppose $m \neq 0$.
Then \nameref{sub:theorem-4c} implies there exists some $p \in \omega$
such that $p^+ = m$.
Because $m$ is the least element of $\omega - A$, it follows $p \in A$ is
the largest element of $A$.
But since $p \not\in p$ by \nameref{sub:lemma-4l-b},
$p \not\in \bigcup A$, a contradiction.
\paragraph{Conclusion}%
Our above two cases are exhaustive.
Since both lead to contradictions, it follows our original assumption
must be wrong.
That is $\omega - A$ is empty, meaning $A = \omega$.
\end{proof}
\subsection{\unverified{Exercise 4.21}}%
@ -8184,25 +8220,65 @@
\end{proof}
\subsection{\sorry{Exercise 4.25}}%
\subsection{\verified{Exercise 4.25}}%
\hyperlabel{sub:exercise-4.25}
Assume that $n \in m$ and $q \in p$.
Show that $$(m \cdot q) + (n \cdot p) \in (m \cdot p) + (n \cdot q).$$
[\textit{Suggestion:} Use \nameref{sub:exercise-4.23}.]
\code*{Bookshelf/Enderton/Set/Chapter\_4}
{Enderton.Set.Chapter\_4.exercise\_4\_25}
\begin{proof}
TODO
Let $n \in m$ and $q \in p$.
By \nameref{sub:exercise-4.23}, there exists some $r \in \omega$ such that
$q + r^+ = p$.
Then
\begin{align*}
& \qquad\quad n \in m \\
& \iff n \cdot r^+ \in m \cdot r^+ & \textref{sub:theorem-4n} \\
& \iff (n \cdot r^+) + ((m \cdot q) + (n \cdot q))
& \textref{sub:theorem-4n} \\
& \qquad\qquad \in (m \cdot r^+) + ((m \cdot q) + (n \cdot q)) \\
& \iff ((m \cdot q) + (n \cdot q)) + (n \cdot r^+)
& \textref{sub:theorem-4k-2} \\
& \qquad\qquad \in ((m \cdot q) + (n \cdot q)) + (m \cdot r^+) \\
& \iff (m \cdot q) + ((n \cdot q) + (n \cdot r^+))
& \textref{sub:theorem-4k-1} \\
& \qquad\qquad \in ((m \cdot q) + (n \cdot q)) + (m \cdot r^+) \\
& \iff (m \cdot q) + ((n \cdot q) + (n \cdot r^+))
& \textref{sub:theorem-4k-2} \\
& \qquad\qquad \in ((n \cdot q) + (m \cdot q)) + (m \cdot r^+) \\
& \iff (m \cdot q) + ((n \cdot q) + (n \cdot r^+))
& \textref{sub:theorem-4k-1} \\
& \qquad\qquad \in (n \cdot q) + ((m \cdot q) + (m \cdot r^+)) \\
& \iff (m \cdot q) + (n \cdot (q + r^+))
& \textref{sub:theorem-4k-3} \\
& \qquad\qquad \in (n \cdot q) + (m \cdot (q + r^+)) \\
& \iff (m \cdot q) + (n \cdot p) \in (n \cdot q) + (m \cdot p) \\
& \iff (m \cdot q) + (n \cdot p) \in (m \cdot p) + (n \cdot q).
& \textref{sub:theorem-4k-2}
\end{align*}
\end{proof}
\subsection{\sorry{Exercise 4.26}}%
\subsection{\unverified{Exercise 4.26}}%
\hyperlabel{sub:exercise-4.26}
Assume that $n \in \omega$ and $f \colon n^+ \rightarrow \omega$.
Show that $\ran{f}$ has a largest element.
\begin{proof}
TODO
By construction, the \nameref{ref:domain} of $f$ is finite.
Therefore $\abs{\ran{f}} \leq \abs{\dom{f}}$, i.e. $\ran{f}$ is also a
finite set.
By the \nameref{sub:trichotomy-law-natural-numbers}, every member of
$\ran{f}$ relates to one another.
Thus there must exist a largest element.
\end{proof}
\subsection{\sorry{Exercise 4.27}}%

View File

@ -82,7 +82,7 @@ Associatve law for addition. For `m, n, p ∈ ω`,
m + (n + p) = (m + n) + p.
```
-/
theorem theorem_4k_1 (m n p : )
theorem theorem_4k_1 {m n p : }
: m + (n + p) = (m + n) + p := by
induction m with
| zero => simp
@ -617,7 +617,7 @@ Assume that `m` and `n` are natural numbers with `m` less than `n`. Show that
there is some `p` in `ω` for which `m + p⁺ = n`. (It follows from this and the
preceding exercise that `m` is less than `n` iff (`∃p ∈ ω) m + p⁺ = n`.)
-/
theorem exercise_4_23 (m n : ) (hm : m < n)
theorem exercise_4_23 {m n : } (hm : m < n)
: ∃ p : , m + p.succ = n := by
induction n with
| zero => simp at hm
@ -668,6 +668,20 @@ Assume that `n ∈ m` and `q ∈ p`. Show that
-/
theorem exercise_4_25 (m n p q : ) (h₁ : n < m) (h₂ : q < p)
: (m * q) + (n * p) < (m * p) + (n * q) := by
sorry
have ⟨r, hr⟩ : ∃ r : , q + r.succ = p := exercise_4_23 h₂
rw [
theorem_4n_ii n m r,
theorem_4n_i (n * r.succ) (m * r.succ) ((m * q) + (n * q))
] at h₁
conv at h₁ => left; rw [theorem_4k_2, ← theorem_4k_1]
conv at h₁ => right; rw [theorem_4k_2]; arg 1; rw [theorem_4k_2]
conv at h₁ => right; rw [← theorem_4k_1]
rw [
← theorem_4k_3 n q r.succ,
← theorem_4k_3 m q r.succ,
hr
] at h₁
conv at h₁ => right; rw [add_comm]
exact h₁
end Enderton.Set.Chapter_4