From a368f32558451d0852586b0cbdefe85d6402cfcf Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Wed, 20 Sep 2023 13:39:59 -0600 Subject: [PATCH] Finite set exercises. --- Bookshelf/Enderton/Set.tex | 94 ++++++++++++++++++++++++++++++-------- 1 file changed, 74 insertions(+), 20 deletions(-) diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index a18d105..23280fa 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -64,6 +64,47 @@ A \textbf{binary operation} on a set $A$ is a \nameref{ref:function} from $A \times A$ into $A$. +\section{\defined{Cardinal Arithmetic}}% +\hyperlabel{sec:cardinal-arithmetic} + + Let $\kappa$ and $\lambda$ be any cardinal numbers. + \begin{enumerate}[(a)] + \item $\kappa + \lambda = \card{(K \cup L)}$, where $K$ and $L$ are any + disjoint sets of cardinality $\kappa$ and $\lambda$, respectively. + \item $\kappa \cdot \lambda = \card{(K \times L)}$, where $K$ and $L$ are + any sets of cardinality $\kappa$ and $\lambda$, respectively. + \item $\kappa^\lambda = \card{(^L{K})}$, where $K$ and $L$ are any sets of + cardinality $\kappa$ and $\lambda$, respectively. + \end{enumerate} + + \lean{Mathlib/SetTheory/Cardinal/Basic} + {Cardinal.add\_def} + + \lean{Mathlib/SetTheory/Cardinal/Basic} + {Cardinal.mul\_def} + + \lean{Mathlib/SetTheory/Cardinal/Basic} + {Cardinal.power\_def} + +\section{\defined{Cardinal Number}}% +\hyperlabel{ref:cardinal-number} + + For any set $C$, the \textbf{cardinal number} of set $C$ is denoted as + $\card{C}$. + Furthermore, + \begin{enumerate}[(a)] + \item For any sets $A$ and $B$, + $$\card{A} = \card{B} \quad\text{iff}\quad \equinumerous{A}{B}.$$ + \item For a finite set $A$, $\card{A}$ is the \nameref{ref:natural-number} + $n$ for which $\equinumerous{A}{n}$. + \end{enumerate} + + \lean{Mathlib/Data/Finset/Card} + {Finset.card} + + \lean{Mathlib/SetTheory/Cardinal/Basic} + {Cardinal} + \section{\defined{Cartesian Product}}% \hyperlabel{ref:cartesian-product} @@ -77,19 +118,6 @@ \lean{Mathlib/Data/Set/Prod}{Set.prod} -\section{\defined{Cardinal Arithmetic}}% -\hyperlabel{sec:cardinal-arithmetic} - - Let $\kappa$ and $\lambda$ be any cardinal numbers. - \begin{enumerate}[(a)] - \item $\kappa + \lambda = \card{(K \cup L)}$, where $K$ and $L$ are any - disjoint sets of cardinality $\kappa$ and $\lambda$, respectively. - \item $\kappa \cdot \lambda = \card{(K \times L)}$, where $K$ and $L$ are - any sets of cardinality $\kappa$ and $\lambda$, respectively. - \item $\kappa^\lambda = \card{^L{K}}$, where $K$ and $L$ are any sets of - cardinality $\kappa$ and $\lambda$, respectively. - \end{enumerate} - \section{\defined{Compatible}}% \hyperlabel{ref:compatible} @@ -1876,7 +1904,7 @@ We proceed by contradiction. Suppose there existed a set $A$ consisting of every singleton. Then the \nameref{ref:union-axiom} suggests $\bigcup A$ is a set. - But this set is precisely the class of all sets, which is \textit{not} a + But this "set" is precisely the class of all sets, which is \textit{not} a set. Thus our original assumption was incorrect. That is, there is no set to which every singleton belongs. @@ -9530,7 +9558,7 @@ Refer to \nameref{sub:theorem-6a}. \end{proof} -\subsection{\sorry{Exercise 6.6}}% +\subsection{\unverified{Exercise 6.6}}% \hyperlabel{sub:exercise-6.6} Let $\kappa$ be a nonzero cardinal number. @@ -9538,20 +9566,46 @@ belongs. \begin{proof} - TODO + Let $\kappa$ be a nonzero cardinal number and define + $$\mathbf{K}_\kappa = \{ X \mid \card{X} = \kappa \}.$$ + For the sake of contradiction, suppose $\mathbf{K}_\kappa$ is a set. + Then the \nameref{ref:union-axiom} suggests $\bigcup \mathbf{K}_{\kappa}$ is + a set. + But this "set" is precisely the class of all sets, which is \textit{not} a + set. + Thus our original assumption was incorrect. + That is, there does not exist a set to which every set of cardinality + $\kappa$ belongs. \end{proof} -\subsection{\sorry{Exercise 6.7}}% +\subsection{\pending{Exercise 6.7}}% \hyperlabel{sub:exercise-6.7} Assume that $A$ is finite and $f \colon A \rightarrow A$. Show that $f$ is one-to-one iff $\ran{f} = A$. \begin{proof} - TODO + Let $A$ be a \nameref{ref:finite-set} and $f \colon A \rightarrow A$. + + \paragraph{($\Rightarrow$)}% + + Suppose $f$ is one-to-one. + Then $f$ is a one-to-one correspondence between $A$ and $\ran{f}$. + That is, $\equinumerous{A}{\ran{f}}$. + Because $f$ maps $A$ onto $A$, $\ran{f} \subseteq A$. + Hence $\ran{f} \subset A$ or $\ran{f} = A$. + But, by \nameref{sub:corollary-6c}, $\ran{f}$ cannot be a proper subset of + $A$. + Thus $\ran{f} = A$. + + \paragraph{($\Leftarrow$)}% + + Suppose $\ran{f} = A$. + TODO + \end{proof} -\subsection{\sorry{Exercise 6.8}}% +\subsection{\pending{Exercise 6.8}}% \hyperlabel{sub:exercise-6.8} Prove that the union of two finite sets is finite, without any use of @@ -9561,7 +9615,7 @@ TODO \end{proof} -\subsection{\sorry{Exercise 6.9}}% +\subsection{\pending{Exercise 6.9}}% \hyperlabel{sub:exercise-6.9} Prove that the Cartesian product of two finite sets is finite, without any use