Theorem Proving in Lean. Finish chapter 8 exercises.

finite-set-exercises
Joshua Potter 2023-04-27 13:20:53 -06:00
parent 6f667fcf14
commit 9f1877f430
2 changed files with 73 additions and 18 deletions

View File

@ -5,7 +5,7 @@ when possible (with respect to my current level of ability) and fallback to
LaTeX when not. LaTeX when not.
- [ ] Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991. - [ ] Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
- [ ] Avigad, Jeremy. Theorem Proving in Lean, n.d. - [x] Avigad, Jeremy. Theorem Proving in Lean, n.d.
- [ ] Axler, Sheldon. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015. - [ ] Axler, Sheldon. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015.
- [ ] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press, 2009. - [ ] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press, 2009.
- [ ] Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001. - [ ] Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001.

View File

@ -59,11 +59,32 @@ end ex2
namespace ex3 namespace ex3
def below {motive : Nat → Type} : Nat → Type def below {motive : Nat → Sort u} (t : Nat) : Sort (max 1 u) :=
| Nat.zero => PUnit Nat.recOn t
| Nat.succ n => PProd (PProd (motive n) (@below motive n)) (PUnit : Type) (zero := PUnit)
(succ := fun n ih => PProd (PProd (motive n) ih) (PUnit : Sort (max 1 u)))
-- TODO: Sort out how to write `brecOn` and `WellFounded.fix`. /--
A copied implementation of `Nat.brecOn` with the `motive` properly supplied.
Notice the `noncomputable` tag; the code generator does not support the `recOn`
recursor yet, for reasons I haven't fully understood yet. This thread touches on
the topic:
https://leanprover-community.github.io/archive/stream/270676-lean4/topic/code.20generator.20does.20not.20support.20recursor.html
-/
noncomputable def brecOn {motive : Nat → Sort u}
(t : Nat) (F : (t : Nat) → @below motive t → motive t) : motive t :=
(Nat.recOn t
(motive := fun n => PProd
(motive n)
(Nat.recOn n PUnit fun n ih => PProd (PProd (motive n) ih) PUnit))
(zero := { fst := F Nat.zero PUnit.unit, snd := PUnit.unit })
(succ := fun n ih => {
fst := F (Nat.succ n) { fst := ih, snd := PUnit.unit },
snd := { fst := ih, snd := PUnit.unit }
})).1
#check WellFounded.fix
end ex3 end ex3
@ -83,7 +104,13 @@ inductive Vector (α : Type u) : Nat → Type u
namespace Vector namespace Vector
-- TODO: Sort out how to write `append`. /--
As long we flip the indices in our type signature in the resulting summation,
there is no need for an auxiliary function.
-/
def append : Vector α m → Vector α n → Vector α (n + m)
| nil, bs => bs
| cons a as, bs => cons a (append as bs)
end Vector end Vector
@ -92,9 +119,7 @@ end ex4
-- ======================================== -- ========================================
-- Exercise 5 -- Exercise 5
-- --
-- Consider the following type of arithmetic expressions. The idea is that -- Consider the following type of arithmetic expressions. The ideSure, looks like RDS w
-- `var n` is a variable, `vₙ`, and `const n` is the constant whose value is
-- `n`.
-- ======================================== -- ========================================
namespace ex5 namespace ex5
@ -115,10 +140,10 @@ def sampleExpr : Expr :=
-- evaluates such an expression, evaluating each `var n` to `v n`. -- evaluates such an expression, evaluating each `var n` to `v n`.
def eval (v : Nat → Nat) : Expr → Nat def eval (v : Nat → Nat) : Expr → Nat
| const n => sorry | const n => n
| var n => v n | var n => v n
| plus e₁ e₂ => sorry | plus e₁ e₂ => eval v e₁ + eval v e₂
| times e₁ e₂ => sorry | times e₁ e₂ => eval v e₁ * eval v e₂
def sampleVal : Nat → Nat def sampleVal : Nat → Nat
| 0 => 5 | 0 => 5
@ -126,7 +151,7 @@ def sampleVal : Nat → Nat
| _ => 0 | _ => 0
-- Try it out. You should get 47 here. -- Try it out. You should get 47 here.
-- #eval eval sampleVal sampleExpr #eval eval sampleVal sampleExpr
-- ---------------------------------------- -- ----------------------------------------
-- Implement "constant fusion," a procedure that simplifies subterms like -- Implement "constant fusion," a procedure that simplifies subterms like
@ -140,15 +165,45 @@ def simpConst : Expr → Expr
| times (const n₁) (const n₂) => const (n₁ * n₂) | times (const n₁) (const n₂) => const (n₁ * n₂)
| e => e | e => e
def fuse : Expr → Expr := sorry def fuse : Expr → Expr
| plus e₁ e₂ => simpConst $ plus (fuse e₁) (fuse e₂)
| times e₁ e₂ => simpConst $ times (fuse e₁) (fuse e₂)
| e => e
theorem simpConst_eq (v : Nat → Nat) theorem simpConst_eq (v : Nat → Nat)
: ∀ e : Expr, eval v (simpConst e) = eval v e := : ∀ e : Expr, eval v (simpConst e) = eval v e := by
sorry intro e
unfold simpConst
repeat { unfold eval }
match h : e with
| const n
| var n
| plus (const _) (const _)
| plus (var _) _
| plus (plus _ _) _
| plus (times _ _) _
| times (const _) (const _)
| times (var _) _
| times (plus _ _) _
| times (times _ _) _ => rfl
| plus _ (var _)
| plus _ (plus _ _)
| plus _ (times _ _)
| times _ (var _)
| times _ (plus _ _)
| times _ (times _ _) => simp only
theorem fuse_eq (v : Nat → Nat) theorem fuse_eq (v : Nat → Nat)
: ∀ e : Expr, eval v (fuse e) = eval v e := : ∀ e : Expr, eval v (fuse e) = eval v e := by
sorry intro e
induction e with
| const n | var n => unfold fuse; rfl
| plus e₁ e₂ he₁ he₂ | times e₁ e₂ he₁ he₂ =>
unfold fuse
rw [simpConst_eq]
unfold eval
rw [he₁, he₂]
-- The last two theorems show that the definitions preserve the value. -- The last two theorems show that the definitions preserve the value.