Apostol. Finish theorem I.33b (additive property of infimums).
parent
52451d5cf5
commit
9cef4d941f
|
@ -418,7 +418,24 @@ theorem inf_minkowski_sum_eq_inf_add_inf (A B : Set ℝ)
|
|||
rwa [← forall_pnat_frac_leq_self_leq_imp_eq this] at hc
|
||||
intro n
|
||||
apply And.intro
|
||||
· sorry
|
||||
· have hd : 1 / (2 * n) > (0 : ℝ) := by norm_num
|
||||
have ⟨a', ha'⟩ := inf_imp_exists_lt_inf_add_delta hd ha
|
||||
have ⟨b', hb'⟩ := inf_imp_exists_lt_inf_add_delta hd hb
|
||||
have hab' : a' + b' - 1 / n < a + b := by
|
||||
have ha'' := sub_lt_sub_right ha'.right (1 / (2 * ↑↑n))
|
||||
have hb'' := sub_lt_sub_right hb'.right (1 / (2 * ↑↑n))
|
||||
rw [add_sub_cancel] at ha'' hb''
|
||||
have hr := add_lt_add ha'' hb''
|
||||
ring_nf at hr
|
||||
ring_nf
|
||||
rwa [← add_sub_assoc, add_sub_right_comm]
|
||||
have hc' : c ≤ a' + b' := by
|
||||
refine forall_glb_imp_forall_ge hc (a' + b') ?_
|
||||
show ∃ a ∈ A, ∃ b ∈ B, a' + b' = a + b
|
||||
exact ⟨a', ⟨ha'.left, ⟨b', ⟨hb'.left, rfl⟩⟩⟩⟩
|
||||
calc c - 1 / n
|
||||
_ ≤ a' + b' - 1 / n := sub_le_sub_right hc' (1 / n)
|
||||
_ ≤ a + b := le_of_lt hab'
|
||||
· exact hc.right hlb
|
||||
|
||||
/--
|
||||
|
@ -432,6 +449,17 @@ theorem forall_mem_le_forall_mem_imp_sup_le_inf (S T : Set ℝ)
|
|||
(hS : S.Nonempty) (hT : T.Nonempty)
|
||||
(p : ∀ s ∈ S, ∀ t ∈ T, s ≤ t)
|
||||
: ∃ (s : ℝ), IsLUB S s ∧ ∃ (t : ℝ), IsGLB T t ∧ s ≤ t := by
|
||||
let ⟨s, hs⟩ := hS
|
||||
let ⟨t, ht⟩ := hT
|
||||
have ps : t ∈ upperBounds S := by
|
||||
intro x hx
|
||||
exact p x hx t ht
|
||||
have pt : s ∈ lowerBounds T := by
|
||||
intro x hx
|
||||
exact p s hs x hx
|
||||
have ⟨s', hs'⟩ := Real.exists_isLUB S hS ⟨t, ps⟩
|
||||
have ⟨t', ht'⟩ := Real.exists_isGLB T hT ⟨s, pt⟩
|
||||
refine ⟨s', ⟨hs', ⟨t', ⟨ht', ?_⟩⟩⟩⟩
|
||||
sorry
|
||||
|
||||
end Real
|
||||
|
|
Loading…
Reference in New Issue