Apostol. Finish theorem I.33b (additive property of infimums).

finite-set-exercises
Joshua Potter 2023-04-14 07:03:23 -06:00
parent 52451d5cf5
commit 9cef4d941f
1 changed files with 29 additions and 1 deletions

View File

@ -418,7 +418,24 @@ theorem inf_minkowski_sum_eq_inf_add_inf (A B : Set )
rwa [← forall_pnat_frac_leq_self_leq_imp_eq this] at hc rwa [← forall_pnat_frac_leq_self_leq_imp_eq this] at hc
intro n intro n
apply And.intro apply And.intro
· sorry · have hd : 1 / (2 * n) > (0 : ) := by norm_num
have ⟨a', ha'⟩ := inf_imp_exists_lt_inf_add_delta hd ha
have ⟨b', hb'⟩ := inf_imp_exists_lt_inf_add_delta hd hb
have hab' : a' + b' - 1 / n < a + b := by
have ha'' := sub_lt_sub_right ha'.right (1 / (2 * ↑↑n))
have hb'' := sub_lt_sub_right hb'.right (1 / (2 * ↑↑n))
rw [add_sub_cancel] at ha'' hb''
have hr := add_lt_add ha'' hb''
ring_nf at hr
ring_nf
rwa [← add_sub_assoc, add_sub_right_comm]
have hc' : c ≤ a' + b' := by
refine forall_glb_imp_forall_ge hc (a' + b') ?_
show ∃ a ∈ A, ∃ b ∈ B, a' + b' = a + b
exact ⟨a', ⟨ha'.left, ⟨b', ⟨hb'.left, rfl⟩⟩⟩⟩
calc c - 1 / n
_ ≤ a' + b' - 1 / n := sub_le_sub_right hc' (1 / n)
_ ≤ a + b := le_of_lt hab'
· exact hc.right hlb · exact hc.right hlb
/-- /--
@ -432,6 +449,17 @@ theorem forall_mem_le_forall_mem_imp_sup_le_inf (S T : Set )
(hS : S.Nonempty) (hT : T.Nonempty) (hS : S.Nonempty) (hT : T.Nonempty)
(p : ∀ s ∈ S, ∀ t ∈ T, s ≤ t) (p : ∀ s ∈ S, ∀ t ∈ T, s ≤ t)
: ∃ (s : ), IsLUB S s ∧ ∃ (t : ), IsGLB T t ∧ s ≤ t := by : ∃ (s : ), IsLUB S s ∧ ∃ (t : ), IsGLB T t ∧ s ≤ t := by
let ⟨s, hs⟩ := hS
let ⟨t, ht⟩ := hT
have ps : t ∈ upperBounds S := by
intro x hx
exact p x hx t ht
have pt : s ∈ lowerBounds T := by
intro x hx
exact p s hs x hx
have ⟨s', hs'⟩ := Real.exists_isLUB S hS ⟨t, ps⟩
have ⟨t', ht'⟩ := Real.exists_isGLB T hT ⟨s, pt⟩
refine ⟨s', ⟨hs', ⟨t', ⟨ht', ?_⟩⟩⟩⟩
sorry sorry
end Real end Real