Add length-related theorems and getters.
parent
89f22ea1b8
commit
9a50ea5a78
|
@ -3,6 +3,9 @@
|
|||
|
||||
1. Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego:
|
||||
Harcourt/Academic Press, 2001.
|
||||
2. Axler, Sheldon. Linear Algebra Done Right. Undergraduate Texts in
|
||||
Mathematics. Cham: Springer International Publishing, 2015.
|
||||
https://doi.org/10.1007/978-3-319-11080-6.
|
||||
-/
|
||||
|
||||
import Mathlib.Tactic.Ring
|
||||
|
@ -10,47 +13,81 @@ import Mathlib.Tactic.Ring
|
|||
universe u
|
||||
|
||||
/--[1]
|
||||
An n-tuple is defined recursively as:
|
||||
An `n`-tuple is defined recursively as:
|
||||
|
||||
⟨x₁, ..., xₙ₊₁⟩ = ⟨⟨x₁, ..., xₙ⟩, xₙ₊₁⟩
|
||||
`⟨x₁, ..., xₙ₊₁⟩ = ⟨⟨x₁, ..., xₙ⟩, xₙ₊₁⟩`
|
||||
|
||||
TODO: As [1] notes, it is useful to define ⟨x⟩ = x. Is this syntactically
|
||||
possible in Lean?
|
||||
As [1] notes, it is useful to define `⟨x⟩ = x`. It is not clear this would be
|
||||
possible in Lean though.
|
||||
|
||||
Though [1] does not describe a notion of an empty tuple, [2] does (though under
|
||||
the name of a "list").
|
||||
--/
|
||||
inductive Tuple : (α : Type u) → Nat → Type u where
|
||||
| only : α → Tuple α 1
|
||||
| cons : {n : Nat} → Tuple α n → α → Tuple α (n + 1)
|
||||
| nil : Tuple α 0
|
||||
| snoc : {n : Nat} → Tuple α n → α → Tuple α (n + 1)
|
||||
|
||||
syntax (priority := high) "⟨" term,+ "⟩" : term
|
||||
|
||||
-- Notice the ambiguity this syntax introduces. For example, pattern `⟨a, b⟩`
|
||||
-- could refer to a `2`-tuple or an `n`-tuple, where `a` is an `(n-1)`-tuple.
|
||||
macro_rules
|
||||
| `(⟨$x⟩) => `(Tuple.only $x)
|
||||
| `(⟨$xs:term,*, $x⟩) => `(Tuple.cons ⟨$xs,*⟩ $x)
|
||||
| `(⟨$x⟩) => `(Tuple.snoc Tuple.nil $x)
|
||||
| `(⟨$xs:term,*, $x⟩) => `(Tuple.snoc ⟨$xs,*⟩ $x)
|
||||
|
||||
namespace Tuple
|
||||
|
||||
/--
|
||||
Returns the value at the nth-index of the given tuple.
|
||||
-/
|
||||
def index (t : Tuple α n) (m : Nat) : 1 ≤ m ∧ m ≤ n → α := by
|
||||
intro h
|
||||
cases t
|
||||
· case only last => exact last
|
||||
. case cons n' init last =>
|
||||
by_cases k : m = n' + 1
|
||||
def length : Tuple α n → Nat
|
||||
| Tuple.nil => 0
|
||||
| Tuple.snoc init _ => length init + 1
|
||||
|
||||
theorem nil_length_zero : length (@Tuple.nil α) = 0 :=
|
||||
rfl
|
||||
|
||||
theorem snoc_length_succ : length (Tuple.snoc init last) = length init + 1 :=
|
||||
rfl
|
||||
|
||||
theorem tuple_length {n : Nat} (t : Tuple α n) : length t = n :=
|
||||
Tuple.recOn t nil_length_zero
|
||||
fun _ _ ih => by
|
||||
rw [snoc_length_succ]
|
||||
norm_num
|
||||
exact ih
|
||||
|
||||
def head : {n : Nat} → Tuple α n → n ≥ 1 → α
|
||||
| n + 1, Tuple.snoc init last, h => by
|
||||
by_cases k : 0 = n
|
||||
· exact last
|
||||
· exact index init m (And.intro h.left (by
|
||||
have h₂ : m + 1 ≤ n' + 1 := Nat.lt_of_le_of_ne h.right k
|
||||
norm_num at h₂
|
||||
exact h₂))
|
||||
· have h' : 0 ≤ n := Nat.le_of_succ_le_succ h
|
||||
exact head init (Nat.lt_of_le_of_ne h' k)
|
||||
|
||||
def last : Tuple α n → n ≥ 1 → α
|
||||
| Tuple.snoc _ last, _ => last
|
||||
|
||||
def index : {n : Nat} → Tuple α n → (k : Nat) → 1 ≤ k ∧ k ≤ n → α
|
||||
| 0, _, m, h => by
|
||||
have ff : 1 ≤ 0 := Nat.le_trans h.left h.right
|
||||
ring_nf at ff
|
||||
exact False.elim ff
|
||||
| n + 1, Tuple.snoc init last, k, h => by
|
||||
by_cases hₖ : k = n + 1
|
||||
· exact last
|
||||
· exact index init k $ And.intro
|
||||
h.left
|
||||
(Nat.le_of_lt_succ $ Nat.lt_of_le_of_ne h.right hₖ)
|
||||
|
||||
/-
|
||||
|
||||
-- TODO: Prove `eq_by_index`.
|
||||
-- TODO: Prove Lemma 0A [1].
|
||||
|
||||
theorem eq_by_index (t₁ t₂ : Tuple α n)
|
||||
: (t₁ = t₂) ↔ (∀ i : Nat, 1 ≤ i ∧ i ≤ n → index t₁ i = index t₂ i) := by
|
||||
: (t₁ = t₂) ↔ (∀ i : Nat, (p : 1 ≤ i ∧ i ≤ n) → index t₁ i p = index t₂ i p) := by
|
||||
apply Iff.intro
|
||||
· sorry
|
||||
· intro teq i hᵢ
|
||||
sorry
|
||||
· sorry
|
||||
|
||||
end Tuple
|
||||
-/
|
||||
|
||||
end Tuple
|
||||
|
|
Loading…
Reference in New Issue