Enderton. Exercise 3.31, Theorem 3K, and corollary.

finite-set-exercises
Joshua Potter 2023-07-04 13:13:57 -06:00
parent 86abd77523
commit 993e9fe981
2 changed files with 296 additions and 28 deletions

View File

@ -44,8 +44,18 @@ For any set $I$ and any function $H$ with domain $I$, if $H(i) \neq \emptyset$
\end{axiom} \end{axiom}
\section{\pending{Cartesian Product}}%
\label{ref:cartesian-product}
Let $I$ be a set and let $H$ be a \nameref{ref:function} whose domain includes $I$.
Then for each $i$ in $I$ we have the set $H(i)$.
We define the \textbf{cartesian product} of the $H(i)$'s as
$$\bigtimes_{i \in I} H(i) = \{f \mid
f \text{ is a function with domain } I \text{ and }
(\forall i \in I) f(i) \in H(i)\}.$$
\section{\defined{Compatible}}% \section{\defined{Compatible}}%
\label{sec:compatible} \label{ref:compatible}
A \nameref{ref:function} $F$ is \textbf{compatible} with relation $R$ if and A \nameref{ref:function} $F$ is \textbf{compatible} with relation $R$ if and
only if for all $x$ and $y$ in $A$, only if for all $x$ and $y$ in $A$,
@ -2569,9 +2579,8 @@ If not, then under what conditions does equality hold?
\end{proof} \end{proof}
\subsection{\verified{Cartesian Product}}% \subsection{\verified{Corollary 3C}}%
\label{sub:corollary-3c} \label{sub:corollary-3c}
\label{sub:cartesian-product}
\begin{theorem}[3C] \begin{theorem}[3C]
@ -3018,7 +3027,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{proof} \end{proof}
\subsection{\pending{Theorem 3K(a)}}% \subsection{\verified{Theorem 3K(a)}}%
\label{sub:theorem-3k-a} \label{sub:theorem-3k-a}
\begin{theorem}[3K(a)] \begin{theorem}[3K(a)]
@ -3040,6 +3049,9 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\begin{proof} \begin{proof}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.theorem\_3k\_a}
Let $F$, $A$, $B$, and $\mathscr{A}$ be arbitrary sets. Let $F$, $A$, $B$, and $\mathscr{A}$ be arbitrary sets.
We prove (i) \eqref{sub:theorem-3k-a-eq1} and (ii) We prove (i) \eqref{sub:theorem-3k-a-eq1} and (ii)
\eqref{sub:theorem-3k-a-eq2}. \eqref{sub:theorem-3k-a-eq2}.
@ -3086,7 +3098,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{proof} \end{proof}
\subsection{\pending{Theorem 3K(b)}}% \subsection{\verified{Theorem 3K(b)}}%
\label{sub:theorem-3k-b} \label{sub:theorem-3k-b}
\begin{theorem}[3K(b)] \begin{theorem}[3K(b)]
@ -3103,13 +3115,23 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\img{F}{\bigcap\mathscr{A}} \subseteq \img{F}{\bigcap\mathscr{A}} \subseteq
\bigcap\;\{\img{F}{A} \mid A \in \mathscr{A}\}. \bigcap\;\{\img{F}{A} \mid A \in \mathscr{A}\}.
\end{equation} \end{equation}
for nonempty $\mathscr{A}$.
Equality holds if $F$ is single-rooted. Equality holds if $F$ is single-rooted.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Let $F$, $A$, $B$, and $\mathscr{A}$ be arbitrary sets. \statementpadding
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.theorem\_3k\_b\_i}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.theorem\_3k\_b\_ii}
Let $F$, $A$, $B$ be arbitrary sets.
Let $\mathscr{A}$ be a nonempty set.
We first prove (i) \eqref{sub:theorem-3k-b-eq1} and (ii) We first prove (i) \eqref{sub:theorem-3k-b-eq1} and (ii)
\eqref{sub:theorem-3k-b-eq2}. \eqref{sub:theorem-3k-b-eq2}.
Then, assuming $F$ is single-rooted, we prove both (iii) Then, assuming $F$ is single-rooted, we prove both (iii)
@ -3162,14 +3184,14 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
Then $\forall A \in \mathscr{A}, v \in \img{F}{A}$. Then $\forall A \in \mathscr{A}, v \in \img{F}{A}$.
By definition of the \nameref{ref:image} of a set, By definition of the \nameref{ref:image} of a set,
$\forall A \in \mathscr{A}, \exists u \in A, uFv$. $\forall A \in \mathscr{A}, \exists u \in A, uFv$.
Since $F$ is single-rooted, it follows that Since $F$ is single-rooted and $\mathscr{A}$ is nonempty, it follows that
$\exists u, \forall A \in \mathscr{A}, u \in A \land uFv$. $\exists u, (\forall A \in \mathscr{A}, u \in A) \land uFv$.
Equivalently, $\exists u \in \bigcap{A}, uFv$. Equivalently, $\exists u \in \bigcap{A}, uFv$.
Thus $v \in \img{F}{\bigcap{A}}$. Thus $v \in \img{F}{\bigcap{A}}$.
\end{proof} \end{proof}
\subsection{\pending{Theorem 3K(c)}}% \subsection{\verified{Theorem 3K(c)}}%
\label{sub:theorem-3k-c} \label{sub:theorem-3k-c}
\begin{theorem}[3K(c)] \begin{theorem}[3K(c)]
@ -3186,6 +3208,14 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\begin{proof} \begin{proof}
\statementpadding
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.theorem\_3k\_c\_i}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.theorem\_3k\_c\_ii}
We prove that (i) \eqref{sub:theorem-3k-c-eq1} holds and (ii) equality holds We prove that (i) \eqref{sub:theorem-3k-c-eq1} holds and (ii) equality holds
if $F$ is single-rooted. if $F$ is single-rooted.
@ -3219,21 +3249,21 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{proof} \end{proof}
\subsection{\pending{Corollary 3L}}% \subsection{\verified{Corollary 3L}}%
\label{sub:corollary-3l} \label{sub:corollary-3l}
\begin{theorem}[3L] \begin{theorem}[3L]
For any function $G$ and sets $A$, $B$, and $\mathscr{A}$: For any function $G$ and sets $A$, $B$, and $\mathscr{A}$:
\begin{align} \begin{align}
G^{-1}\left\llbracket\bigcup\mathscr{A}\right\rrbracket \img{G^{-1}}{\bigcup{\mathscr{A}}}
& = \bigcup\;\{G^{-1}[A] \mid A \in \mathscr{A}\}, & = \bigcup\;\{\img{G^{-1}}{A} \mid A \in \mathscr{A}\},
\label{sub:corollary-3l-eq1} \\ \label{sub:corollary-3l-eq1} \\
G^{-1}\left[\bigcap\mathscr{A}\right] \img{G^{-1}}{\bigcap{\mathscr{A}}}
& = \bigcap\;\{G^{-1}[A] \mid A \in \mathscr{A}\} & = \bigcap\;\{\img{G^{-1}}{A} \mid A \in \mathscr{A}\}
\text{ for } \mathscr{A} \neq \emptyset, \text{ for } \mathscr{A} \neq \emptyset,
\label{sub:corollary-3l-eq2} \\ \label{sub:corollary-3l-eq2} \\
G^{-1}[A - B] & = G^{-1}[A] - G^{-1}[B]. \img{G^{-1}}{A - B} & = \img{G^{-1}}{A} - \img{G^{-1}}{B}.
\label{sub:corollary-3l-eq3} \label{sub:corollary-3l-eq3}
\end{align} \end{align}
@ -3241,6 +3271,17 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\begin{proof} \begin{proof}
\statementpadding
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.corollary\_3l\_i}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.corollary\_3l\_ii}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.corollary\_3l\_iii}
\nameref{sub:theorem-3k-a} implies \eqref{sub:corollary-3l-eq1}. \nameref{sub:theorem-3k-a} implies \eqref{sub:corollary-3l-eq1}.
Because the inverse of a function is always single-rooted, Because the inverse of a function is always single-rooted,
\nameref{sub:theorem-3k-b} implies \eqref{sub:corollary-3l-eq2}. \nameref{sub:theorem-3k-b} implies \eqref{sub:corollary-3l-eq2}.
@ -3441,7 +3482,7 @@ Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
{Enderton.Set.Chapter\_3.exercise\_3\_2a} {Enderton.Set.Chapter\_3.exercise\_3\_2a}
Let $A$, $B$, and $C$ be arbitrary sets. Let $A$, $B$, and $C$ be arbitrary sets.
Then by definition of the \nameref{sub:cartesian-product} and union of sets, Then by \nameref{sub:corollary-3c} and the definition of the union of sets,
\begin{align*} \begin{align*}
A \times (B \cup C) A \times (B \cup C)
& = \{ \left< x, y \right> \mid x \in A \land y \in (B \cup C) \} \\ & = \{ \left< x, y \right> \mid x \in A \land y \in (B \cup C) \} \\
@ -3467,7 +3508,7 @@ Show that if $A \times B = A \times C$ and $A \neq \emptyset$, then $B = C$.
{Enderton.Set.Chapter\_3.exercise\_3\_2b} {Enderton.Set.Chapter\_3.exercise\_3\_2b}
Let $A$, $B$, and $C$ be arbitrary sets such that $A \neq \emptyset$. Let $A$, $B$, and $C$ be arbitrary sets such that $A \neq \emptyset$.
By definition of the \nameref{sub:cartesian-product}, By \nameref{sub:corollary-3c},
\begin{align} \begin{align}
A \times B & = \{ \left< x, y \right> \mid x \in A \land y \in B \} A \times B & = \{ \left< x, y \right> \mid x \in A \land y \in B \}
& \label{sub:exercise-3.2b-eq1} \\ & \label{sub:exercise-3.2b-eq1} \\
@ -3513,7 +3554,7 @@ Show that $A \times \bigcup \mathscr{B} =
{Enderton.Set.Chapter\_3.exercise\_3\_3} {Enderton.Set.Chapter\_3.exercise\_3\_3}
Let $A$ and $\mathscr{B}$ be arbitrary sets. Let $A$ and $\mathscr{B}$ be arbitrary sets.
By definition of the \nameref{sub:cartesian-product} and the union of sets, By \nameref{sub:corollary-3c} and the definition of the union of sets,
\begin{align*} \begin{align*}
A \times \bigcup\mathscr{B} A \times \bigcup\mathscr{B}
& = \{ \left< x, y \right> \mid & = \{ \left< x, y \right> \mid
@ -3564,10 +3605,10 @@ In other words, show that $\{\{x\} \times B \mid x \in A\}$ is a set.
Let $a \in A$. Let $a \in A$.
By the \nameref{ref:pairing-axiom}, $\{a\}$ is a set. By the \nameref{ref:pairing-axiom}, $\{a\}$ is a set.
By \nameref{sub:cartesian-product}, $\{a\} \times B$ is a set. By \nameref{sub:corollary-3c}, $\{a\} \times B$ is a set.
Again by the \nameref{ref:pairing-axiom}, $\{\{a\} \times B\}$ is a set. Again by the \nameref{ref:pairing-axiom}, $\{\{a\} \times B\}$ is a set.
Next, by another application of \nameref{sub:cartesian-product}, $A \times B$ Next, by another application of \nameref{sub:corollary-3c}, $A \times B$
is a set. is a set.
By the \nameref{ref:power-set-axiom}, $\powerset{(A \times B)}$ is a set. By the \nameref{ref:power-set-axiom}, $\powerset{(A \times B)}$ is a set.
Thus, by the \nameref{ref:subset-axioms}, the following is also a set: Thus, by the \nameref{ref:subset-axioms}, the following is also a set:
@ -3593,7 +3634,7 @@ In other words, show that $\{\{x\} \times B \mid x \in A\}$ is a set.
\paragraph{($\Leftarrow$)}% \paragraph{($\Leftarrow$)}%
Suppose $y = \{a\} \times B$ for some $a \in A$. Suppose $y = \{a\} \times B$ for some $a \in A$.
By \nameref{sub:cartesian-product}, $x \in \{a\} \times B$ if and only if By \nameref{sub:corollary-3c}, $x \in \{a\} \times B$ if and only if
$\exists b \in B$ such that $x = \left< a, b \right>$. $\exists b \in B$ such that $x = \left< a, b \right>$.
But then $x \in y$ if and only if $\exists b \in B$ such that But then $x \in y$ if and only if $\exists b \in B$ such that
$x = \left< a, b \right>$. $x = \left< a, b \right>$.
@ -3618,7 +3659,7 @@ With $A$, $B$, and $C$ as above, show that $A \times B = \bigcup C$.
A \times B = \bigcup\; \{\{x\} \times B \mid x \in A\}. A \times B = \bigcup\; \{\{x\} \times B \mid x \in A\}.
\end{equation} \end{equation}
The left-hand side of \eqref{sub:exercise-3.5b-eq1} is a set by virtue of The left-hand side of \eqref{sub:exercise-3.5b-eq1} is a set by virtue of
\nameref{sub:cartesian-product}. \nameref{sub:corollary-3c}.
The right-hand side of \eqref{sub:exercise-3.5b-eq1} is a set by virtue of The right-hand side of \eqref{sub:exercise-3.5b-eq1} is a set by virtue of
\nameref{sub:exercise-3.5a}. \nameref{sub:exercise-3.5a}.
We prove the set on each side is a subset of the other. We prove the set on each side is a subset of the other.
@ -4193,9 +4234,8 @@ Show that $F \restriction A = F \cap (A \times \ran{F})$.
\begin{proof} \begin{proof}
Let $F$ and $A$ be arbitrary sets. Let $F$ and $A$ be arbitrary sets.
By definition of the \nameref{ref:restriction}, intersection, By \nameref{sub:corollary-3c} and definition of the \nameref{ref:restriction},
\nameref{ref:range}, and \nameref{sub:cartesian-product} of sets, intersection, and \nameref{ref:range} of sets,
Then
\begin{align*} \begin{align*}
F \restriction A F \restriction A
& = \{\left< u, v \right> \mid uFv \land u \in A\} \\ & = \{\left< u, v \right> \mid uFv \land u \in A\} \\
@ -4559,7 +4599,7 @@ Define
\end{proof} \end{proof}
\subsection{\sorry{Exercise 3.31}}% \subsection{\unverified{Exercise 3.31}}%
\label{sub:exercise-3.31} \label{sub:exercise-3.31}
Show that from the first form of the axiom of choice we can prove the second Show that from the first form of the axiom of choice we can prove the second
@ -4567,7 +4607,55 @@ Show that from the first form of the axiom of choice we can prove the second
\begin{proof} \begin{proof}
TODO We prove the first form holds if and only if the second form holds.
\paragraph{($\Rightarrow$)}%
We assume the first form of the axiom of choice.
Let $I$ be a set and $H$ be a function with $\dom{H} = I$.
Furthermore, suppose $H(i) \neq \emptyset$ for all $i \in I$.
By definition of the \nameref{ref:cartesian-product},
$$\bigtimes_{i \in I} H(i) = \{f \mid
f \text{ is a function with } \dom{f} = I \text{ and }
(\forall i \in I) f(i) \in H(i)\}.$$
Consider the relation $R$ formed by
$$R = \bigcup_{i \in I} \{i\} \times H(i).$$
By the \nameref{ref:axiom-of-choice-1}, there exists a function
$f \subseteq R$ with $\dom{f} = I$.
Furthermore, for all $i \in I$, it must be $f(i) \in H(i)$ by construction.
Then $f$ is a member of $\bigtimes_{i \in I} H(i)$.
That is, $\bigtimes_{i \in I} H(i) \neq \emptyset$.
\paragraph{($\Leftarrow$)}%
We assume the second form of the axiom of choice.
Let $R$ be an arbitrary relation.
There are two cases to consider:
\subparagraph{Case 1}%
Suppose $\ran{R} = \emptyset$.
Then $R = \emptyset$.
Thus the function $\emptyset \subseteq R$ satisfies
$\dom{\emptyset} = \dom{R}$.
\subparagraph{Case 2}%
Suppose $\ran{R} \neq \emptyset$.
Let $I = \dom{R}$ and define $H \colon I \rightarrow \{\ran{R}\}$ as
$H(i) = \ran{R}$ for all $i \in I$.
By the \nameref{ref:axiom-of-choice-2},
$\bigtimes_{i \in I} H(i) \neq \emptyset$.
By definition of the \nameref{ref:cartesian-product}, there exists some
function $f$ such that $\dom{f} = I$ and
$(\forall i \in I) f(i) \in H(i) = \ran{R}$.
Thus $\dom{f} = \dom{R}$ and $f \subseteq R$ as desired.
\paragraph{Conclusion}%
The above cases are exhaustive and yield the same conclusion: for any
relation $R$ there exists a function $f \subseteq R$ such that
$\dom{f} = \dom{R}$.
\end{proof} \end{proof}

View File

@ -534,6 +534,186 @@ theorem theorem_3j_b {F : Set.Relation α} {A B : Set α}
(∀ p ∈ F.comp H, p.1 = p.2)) ↔ F.mapsOnto A B := by (∀ p ∈ F.comp H, p.1 = p.2)) ↔ F.mapsOnto A B := by
sorry sorry
/-- #### Theorem 3K (a)
The following hold for any sets. (`F` need not be a function.)
The image of a union is the union of the images:
```
F⟦ 𝓐⟧ = {F⟦A⟧ | A ∈ 𝓐}
```
-/
theorem theorem_3k_a {F : Set.Relation α} {𝓐 : Set (Set α)}
: F.image (⋃₀ 𝓐) = ⋃₀ { F.image A | A ∈ 𝓐 } := by
rw [Set.Subset.antisymm_iff]
apply And.intro
· show ∀ v, v ∈ F.image (⋃₀ 𝓐) → v ∈ ⋃₀ { F.image A | A ∈ 𝓐 }
intro v hv
unfold image at hv
simp only [Set.mem_sUnion, Set.mem_setOf_eq] at hv
have ⟨u, hu⟩ := hv
have ⟨A, hA⟩ := hu.left
simp only [Set.mem_sUnion, Set.mem_setOf_eq, exists_exists_and_eq_and]
refine ⟨A, hA.left, ?_⟩
show v ∈ F.image A
unfold image
simp only [Set.mem_setOf_eq]
exact ⟨u, hA.right, hu.right⟩
· show ∀ v, v ∈ ⋃₀ {x | ∃ A, A ∈ 𝓐 ∧ F.image A = x} → v ∈ F.image (⋃₀ 𝓐)
intro v hv
simp only [Set.mem_sUnion, Set.mem_setOf_eq, exists_exists_and_eq_and] at hv
have ⟨A, hA⟩ := hv
unfold image at hA
simp only [Set.mem_setOf_eq] at hA
have ⟨u, hu⟩ := hA.right
unfold image
simp only [Set.mem_sUnion, Set.mem_setOf_eq]
exact ⟨u, ⟨A, hA.left, hu.left⟩, hu.right⟩
/-! #### Theorem 3K (b)
The following hold for any sets. (`F` need not be a function.)
The image of an intersection is included in the intersection of the images:
```
F⟦⋂ 𝓐⟧ ⊆ ⋂ {F⟦A⟧ | A ∈ 𝓐}
```
Equality holds if `F` is single-rooted.
-/
theorem theorem_3k_b_i {F : Set.Relation α} {𝓐 : Set (Set α)}
: F.image (⋂₀ 𝓐) ⊆ ⋂₀ { F.image A | A ∈ 𝓐} := by
show ∀ v, v ∈ F.image (⋂₀ 𝓐) → v ∈ ⋂₀ { F.image A | A ∈ 𝓐}
intro v hv
unfold image at hv
simp only [Set.mem_sInter, Set.mem_setOf_eq] at hv
have ⟨u, hu⟩ := hv
simp only [
Set.mem_sInter,
Set.mem_setOf_eq,
forall_exists_index,
and_imp,
forall_apply_eq_imp_iff₂
]
intro A hA
unfold image
simp only [Set.mem_setOf_eq]
exact ⟨u, hu.left A hA, hu.right⟩
theorem theorem_3k_b_ii {F : Set.Relation α} {𝓐 : Set (Set α)}
(hF : F.isSingleRooted) (h𝓐 : Set.Nonempty 𝓐)
: F.image (⋂₀ 𝓐) = ⋂₀ { F.image A | A ∈ 𝓐} := by
rw [Set.Subset.antisymm_iff]
refine ⟨theorem_3k_b_i, ?_⟩
show ∀ v, v ∈ ⋂₀ {x | ∃ A, A ∈ 𝓐 ∧ image F A = x} → v ∈ image F (⋂₀ 𝓐)
intro v hv
simp only [
Set.mem_sInter,
Set.mem_setOf_eq,
forall_exists_index,
and_imp,
forall_apply_eq_imp_iff₂
] at hv
unfold image at hv
simp only [Set.mem_setOf_eq] at hv
have ⟨u, hu⟩ : ∃ u, (∀ (a : Set α), a ∈ 𝓐 → u ∈ a) ∧ (u, v) ∈ F := by
have ⟨A, hA⟩ := h𝓐
have ⟨_, ⟨_, hv'⟩⟩ := hv A hA
have ⟨u, hu⟩ := hF v (mem_pair_imp_snd_mem_ran hv')
simp only [and_imp] at hu
refine ⟨u, ?_, hu.left.right⟩
intro a ha
have ⟨u₁, hu₁⟩ := hv a ha
have := hu.right u₁ (mem_pair_imp_fst_mem_dom hu₁.right) hu₁.right
rw [← this]
exact hu₁.left
unfold image
simp only [Set.mem_sInter, Set.mem_setOf_eq]
exact ⟨u, hu⟩
/-! #### Theorem 3K (c)
The following hold for any sets. (`F` need not be a function.)
The image of a difference includes the difference of the images:
```
F⟦A⟧ - F⟦B⟧ ⊆ F⟦A - B⟧.
```
Equality holds if `F` is single-rooted.
-/
theorem theorem_3k_c_i {F : Set.Relation α} {A B : Set α}
: F.image A \ F.image B ⊆ F.image (A \ B) := by
show ∀ v, v ∈ F.image A \ F.image B → v ∈ F.image (A \ B)
intro v hv
have hv' : v ∈ image F A ∧ v ∉ image F B := hv
conv at hv' => arg 1; unfold image; simp only [Set.mem_setOf_eq, eq_iff_iff]
have ⟨u, hu⟩ := hv'.left
have hw : ∀ w ∈ B, (w, v) ∉ F := by
intro w hw nw
have nv := hv'.right
unfold image at nv
simp only [Set.mem_setOf_eq, not_exists, not_and] at nv
exact absurd nw (nv w hw)
have hu' : u ∉ B := by
by_contra nu
exact absurd hu.right (hw u nu)
unfold image
simp only [Set.mem_diff, Set.mem_setOf_eq]
exact ⟨u, ⟨hu.left, hu'⟩, hu.right⟩
theorem theorem_3k_c_ii {F : Set.Relation α} {A B : Set α}
(hF : F.isSingleRooted)
: F.image A \ F.image B = F.image (A \ B) := by
rw [Set.Subset.antisymm_iff]
refine ⟨theorem_3k_c_i, ?_⟩
show ∀ v, v ∈ image F (A \ B) → v ∈ image F A \ image F B
intro v hv
unfold image at hv
simp only [Set.mem_diff, Set.mem_setOf_eq] at hv
have ⟨u, hu⟩ := hv
have hv₁ : v ∈ F.image A := by
unfold image
simp only [Set.mem_setOf_eq]
exact ⟨u, hu.left.left, hu.right⟩
have hv₂ : v ∉ F.image B := by
intro nv
unfold image at nv
simp only [Set.mem_setOf_eq] at nv
have ⟨u₁, hu₁⟩ := nv
have ⟨x, hx⟩ := hF v (mem_pair_imp_snd_mem_ran hu.right)
simp only [and_imp] at hx
have hr₁ := hx.right u (mem_pair_imp_fst_mem_dom hu.right) hu.right
have hr₂ := hx.right u₁ (mem_pair_imp_fst_mem_dom hu₁.right) hu₁.right
rw [hr₂, ← hr₁] at hu₁
exact absurd hu₁.left hu.left.right
exact ⟨hv₁, hv₂⟩
/-! #### Corollary 3L
For any function `G` and sets `A`, `B`, and `𝓐`:
```
G⁻¹⟦ 𝓐⟧ = {G⁻¹⟦A⟧ | A ∈ 𝓐},
G⁻¹⟦𝓐⟧ = ⋂ {G⁻¹⟦A⟧ | A ∈ 𝓐} for 𝓐 ≠ ∅,
G⁻¹⟦A - B⟧ = G⁻¹⟦A⟧ - G⁻¹⟦B⟧.
```
-/
theorem corollary_3l_i {G : Set.Relation α} {𝓐 : Set (Set α)}
: G.inv.image (⋃₀ 𝓐) = ⋃₀ {G.inv.image A | A ∈ 𝓐} := theorem_3k_a
theorem corollary_3l_ii {G : Set.Relation α} {𝓐 : Set (Set α)}
(hG : G.isSingleValued) (h𝓐 : Set.Nonempty 𝓐)
: G.inv.image (⋂₀ 𝓐) = ⋂₀ {G.inv.image A | A ∈ 𝓐} := by
have hG' : G.inv.isSingleRooted :=
single_valued_self_iff_single_rooted_inv.mp hG
exact theorem_3k_b_ii hG' h𝓐
theorem corollary_3l_iii {G : Set.Relation α} {A B : Set α}
(hG : G.isSingleValued)
: G.inv.image (A \ B) = G.inv.image A \ G.inv.image B := by
have hG' : G.inv.isSingleRooted :=
single_valued_self_iff_single_rooted_inv.mp hG
exact (theorem_3k_c_ii hG').symm
end end
end Enderton.Set.Chapter_3 end Enderton.Set.Chapter_3