Start working on Apostol exercises 1.7.
parent
cd8fec9483
commit
98f4f777de
|
@ -2,8 +2,11 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../../..}{Bookshelf/Real/Sequence/Arithmetic}
|
||||
{Real.Arithmetic.#1}}
|
||||
\newcommand{\link}[1]{\lean{../../..}
|
||||
{Bookshelf/Real/Sequence/Arithmetic}
|
||||
{Real.Arithmetic.#1}
|
||||
{Real.Arithmetic.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -16,7 +19,7 @@ $$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{sum_recursive_closed}
|
||||
\link{sum\_recursive\_closed}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -2,8 +2,11 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../../..}{Bookshelf/Real/Sequence/Geometric}
|
||||
{Real.Geometric.#1}}
|
||||
\newcommand{\link}[1]{\lean{../../..}
|
||||
{Bookshelf/Real/Sequence/Geometric}
|
||||
{Real.Geometric.#1}
|
||||
{Real.Geometric.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -16,7 +19,7 @@ $$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{sum_recursive_closed}
|
||||
\link{sum\_recursive\_closed}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -3,8 +3,11 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}{Exercises/Apostol/Chapter_I_3}
|
||||
{Exercises.Apostol.Chapter\_I\_3.Real.#1}}
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Exercises/Apostol/Chapter\_I\_3}
|
||||
{Exercises.Apostol.Chapter\_I\_3.Real.#1}
|
||||
{Chapter\_I\_3.Real.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -16,7 +19,7 @@ is, there is a real number $L$ such that $L = \inf{S}$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{exists_isGLB}
|
||||
\link{exists\_isGLB}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -27,7 +30,7 @@ For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{exists_pnat_geq_self}
|
||||
\link{exists\_pnat\_geq\_self}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -39,7 +42,7 @@ integer $n$ such that $nx > y$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{exists_pnat_mul_self_geq_of_pos}
|
||||
\link{exists\_pnat\_mul\_self\_geq\_of\_pos}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -52,7 +55,7 @@ for every integer $n \geq 1$, then $x = a$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{forall_pnat_leq_self_leq_frac_imp_eq}
|
||||
\link{forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -70,8 +73,8 @@ Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
|||
\begin{proof}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item \link{sup_imp_exists_gt_sup_sub_delta}
|
||||
\item \link{inf_imp_exists_lt_inf_add_delta}
|
||||
\item \link{sup\_imp\_exists\_gt\_sup\_sub\_delta}
|
||||
\item \link{inf\_imp\_exists\_lt\_inf\_add\_delta}
|
||||
\end{enumerate}
|
||||
|
||||
\end{proof}
|
||||
|
@ -92,8 +95,8 @@ $$C = \{a + b : a \in A, b \in B\}.$$
|
|||
\begin{proof}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item \link{sup_minkowski_sum_eq_sup_add_sup}
|
||||
\item \link{inf_minkowski_sum_eq_inf_add_inf}
|
||||
\item \link{sup\_minkowski\_sum\_eq\_sup\_add\_sup}
|
||||
\item \link{inf\_minkowski\_sum\_eq\_inf\_add\_inf}
|
||||
\end{enumerate}
|
||||
|
||||
\end{proof}
|
||||
|
@ -109,7 +112,7 @@ $$\sup{S} \leq \inf{T}.$$
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{forall_mem_le_forall_mem_imp_sup_le_inf}
|
||||
\link{forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -0,0 +1,177 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\larea}[2]{\lean{../..}{Bookshelf/Real/Geometry/Area}{#1}{#2}}
|
||||
\newcommand{\lrect}[2]{\lean{../..}{Bookshelf/Real/Geometry/Rectangle}{#1}{#2}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
The properties of area in this set of exercises are to be deduced from the
|
||||
axioms for area stated in the foregoing section.
|
||||
|
||||
\section{Exercise 1}%
|
||||
\label{sec:exercise-1}
|
||||
|
||||
Prove that each of the following sets is measurable and has zero area:
|
||||
|
||||
\subsection{Exercise 1a}%
|
||||
\label{sub:exercise-1a}
|
||||
|
||||
A set consisting of a single point.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $S$ be a set consisting of a single point.
|
||||
By definition of a \lrect{Real.Point}{Point}, $S$ is a rectangle in which all
|
||||
vertices coincide.
|
||||
By \larea{Choice-of-Scale}{Choice of Scale}, $S$ is measurable with area its
|
||||
width times its height.
|
||||
The width and height of $S$ is trivially zero.
|
||||
Therefore $a(S) = (0)(0) = 0$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 1b}%
|
||||
\label{sub:exercise-1b}
|
||||
|
||||
A set consisting of a finite number of points in a plane.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
We show for all $k > 0$, a set consisting of $k$ points in a plane is
|
||||
measurable with area $0$.
|
||||
|
||||
\paragraph{Base Case}%
|
||||
|
||||
Consider a set $S$ consisting of a single point in a plane.
|
||||
By \eqref{sub:exercise-1a}, $S$ is measurable with area $0$.
|
||||
|
||||
\paragraph{Induction Step}%
|
||||
|
||||
Define our induction hypothesis as, "Let $k > 0$ and assume a set consisting
|
||||
of $k$ points in a plane is measurable with area $0$."
|
||||
|
||||
Consider a set $S_{k+1}$ consisting of $k + 1$ points in a plane.
|
||||
Pick an arbitrary point of $S_{k+1}$.
|
||||
Denote the set containing just this point as $T$.
|
||||
Denote the remaining set of points as $S_k$.
|
||||
By construction, $S_{k+1} = S_k \cup T$.
|
||||
By the induction hypothesis, $S_k$ is measurable with area $0$.
|
||||
By \eqref{sub:exercise-1a}, $T$ is measurable with area $0$.
|
||||
By the \larea{Additive-Property}{Additive Property}, $S_k \cup T$ is
|
||||
measurable, $S_k \cap T$ is measurable, and
|
||||
\begin{align}
|
||||
a(S_{k+1})
|
||||
& = a(S_k \cup T) \nonumber \\
|
||||
& = a(S_k) + a(T) - a(S_k \cap T) \nonumber \\
|
||||
& = 0 + 0 - a(S_k \cap T). \label{sub:exercise-1b-eq1}
|
||||
\end{align}
|
||||
|
||||
\noindent
|
||||
There are two cases to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
$S_k \cap T = \emptyset$.
|
||||
Then it trivially follows that $a(S_k \cap T) = 0$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
$S_k \cap T \neq \emptyset$.
|
||||
Since $T$ consists of a single point, $S_k \cap T = T$.
|
||||
By \eqref{sub:exercise-1a}, $a(S_k \cap T) = a(T) = 0$.
|
||||
|
||||
\vspace{8pt}
|
||||
\noindent
|
||||
In both cases, \eqref{sub:exercise-1b-eq1} evaluates to $0$, implying
|
||||
$a(S_{k+1}) = 0$ as expected.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
By mathematical induction, it follows for all $n > 0$, a set consisting of
|
||||
$n$ points in a plane is measurable with area $0$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{Exercise 1c}%
|
||||
\label{sub:exercise-1c}
|
||||
|
||||
The union of a finite collection of line segments in a plane.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
We show for all $k > 0$, a set consisting of $k$ line segments in a plane is
|
||||
measurable with area $0$.
|
||||
|
||||
\paragraph{Base Case}%
|
||||
|
||||
Consider a set $S$ consisting of a single line segment in a plane.
|
||||
By definition of a \lrect{Real.LineSemgnet}{Line Segment}, $S$ is a
|
||||
rectangle in which one side has dimension $0$.
|
||||
By \larea{Choice-of-Scale}{Choice of Scale}, $S$ is measurable with area its
|
||||
width $w$ times its height $h$.
|
||||
Therefore $a(S) = wh = 0$.
|
||||
|
||||
\paragraph{Induction Step}%
|
||||
|
||||
Define our induction hypothesis as, "Let $k > 0$ and assume a set consisting
|
||||
of $k$ line segments in a plane is measurable with area $0$."
|
||||
|
||||
Consider a set $S_{k+1}$ consisting of $k + 1$ line segments in a plane.
|
||||
Pick an arbitrary line segment of $S_{k+1}$.
|
||||
Denote the set containing just this line segment as $T$.
|
||||
Denote the remaining set of line segments as $S_k$.
|
||||
By construction, $S_{k+1} = S_k \cup T$.
|
||||
By the induction hypothesis, $S_k$ is measurable with area $0$.
|
||||
By the base case, $T$ is measurable with area $0$.
|
||||
By the \larea{Additive-Property}{Additive Property}, $S_k \cup T$ is
|
||||
measurable, $S_k \cap T$ is measurable, and
|
||||
\begin{align}
|
||||
a(S_{k+1})
|
||||
& = a(S_k \cup T) \nonumber \\
|
||||
& = a(S_k) + a(T) - a(S_k \cap T) \nonumber \\
|
||||
& = 0 + 0 - a(S_k \cap T). \label{sub:exercise-1c-eq1}
|
||||
\end{align}
|
||||
|
||||
\noindent
|
||||
There are two cases to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
$S_k \cap T = \emptyset$.
|
||||
Then it trivially follows that $a(S_k \cap T) = 0$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
$S_k \cap T \neq \emptyset$.
|
||||
Since $T$ consists of a single point, $S_k \cap T = T$.
|
||||
By the base case, $a(S_k \cap T) = a(T) = 0$.
|
||||
|
||||
\vspace{8pt}
|
||||
\noindent
|
||||
In both cases, \eqref{sub:exercise-1c-eq1} evaluates to $0$, implying
|
||||
$a(S_{k+1}) = 0$ as expected.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
By mathematical induction, it follows for all $n > 0$, a set consisting of
|
||||
$n$ line segments in a plane is measurable with area $0$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercise 2}%
|
||||
\label{sec:exercise-2}
|
||||
|
||||
Every right triangular region is measurable because it can be obtained as the
|
||||
intersection of two rectangles. Prove that every triangular region is measurable
|
||||
and that its area is one half the product of its base and altitude.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
|
@ -2,8 +2,11 @@
|
|||
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}{Exercises/Enderton/Chapter0}
|
||||
{Exercises.Enderton.Chapter0.#1}}
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Exercises/Enderton/Chapter0}
|
||||
{Exercises.Enderton.Chapter0.#1}
|
||||
{Chapter0.#1}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -15,7 +18,7 @@ Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\link{lemma_0a}
|
||||
\link{lemma\_0a}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
\usepackage{amsfonts, amsthm}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\newtheorem{theorem}{Theorem}
|
||||
|
@ -11,11 +10,6 @@
|
|||
|
||||
\hypersetup{colorlinks=true, urlcolor=blue}
|
||||
|
||||
% https://tex.stackexchange.com/a/232188
|
||||
\newcommand{\startunderscoreletter}{\catcode`_ 12\relax}
|
||||
\newcommand{\stopunderscoreletter}{\catcode`_ 8\relax}
|
||||
|
||||
% The first argument refers to a relative path upward from a current file to
|
||||
% the root of the workspace (i.e. where this `preamble.tex` file is located).
|
||||
\newcommand{\lean}[3]{\href{#1/#2.html\##3}{
|
||||
\startunderscoreletter #3 \stopunderscoreletter}}
|
||||
\newcommand{\lean}[4]{\href{#1/#2.html\##3}{#4}}
|
||||
|
|
Loading…
Reference in New Issue