Enderton (set). Begin chapter 6 exercises.
parent
94550ab43e
commit
8f833f9353
|
@ -2,5 +2,6 @@ import Bookshelf.Enderton.Set.Chapter_1
|
|||
import Bookshelf.Enderton.Set.Chapter_2
|
||||
import Bookshelf.Enderton.Set.Chapter_3
|
||||
import Bookshelf.Enderton.Set.Chapter_4
|
||||
import Bookshelf.Enderton.Set.Chapter_6
|
||||
import Bookshelf.Enderton.Set.OrderedPair
|
||||
import Bookshelf.Enderton.Set.Relation
|
|
@ -127,8 +127,8 @@
|
|||
\section{\defined{Equinumerous}}%
|
||||
\hyperlabel{ref:equinumerous}
|
||||
|
||||
A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
||||
only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$.
|
||||
A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
||||
if and only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$.
|
||||
|
||||
\lean*{Mathlib/Init/Function}
|
||||
{Function.Bijective}
|
||||
|
@ -215,14 +215,26 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
only one $x$ such that $xFy$.
|
||||
One-to-one functions are sometimes called \textbf{injections}.
|
||||
|
||||
\lean*{Mathlib/Init/Function}
|
||||
{Function.Injective}
|
||||
\code*{Bookshelf/Enderton/Set/Relation}
|
||||
{Set.Relation.isSingleValued}
|
||||
|
||||
\lean{Mathlib/Init/Function}
|
||||
{Function.Surjective}
|
||||
\code{Bookshelf/Enderton/Set/Relation}
|
||||
{Set.Relation.isSingleRooted}
|
||||
|
||||
\lean{Mathlib/Init/Function}
|
||||
{Function.Bijective}
|
||||
\code{Bookshelf/Enderton/Set/Relation}
|
||||
{Set.Relation.isOneToOne}
|
||||
|
||||
\lean{Mathlib/Data/Set/Function}
|
||||
{Set.MapsTo}
|
||||
|
||||
\lean{Mathlib/Data/Set/Function}
|
||||
{Set.InjOn}
|
||||
|
||||
\lean{Mathlib/Data/Set/Function}
|
||||
{Set.SurjOn}
|
||||
|
||||
\lean{Mathlib/Data/Set/Function}
|
||||
{Set.BijOn}
|
||||
|
||||
\section{\defined{Image}}%
|
||||
\hyperlabel{ref:image}
|
||||
|
@ -2863,11 +2875,10 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Lemma 1}}%
|
||||
\hyperlabel{sub:lemma-1}
|
||||
\subsection{\verified{One-to-One Inverse}}%
|
||||
\hyperlabel{sub:one-to-one-inverse}
|
||||
|
||||
\begin{lemma}[1]
|
||||
\begin{lemma}
|
||||
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||
\end{lemma}
|
||||
|
||||
|
@ -2992,6 +3003,43 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{One-to-One Composition}}%
|
||||
\hyperlabel{sub:one-to-one-composition}
|
||||
|
||||
\begin{lemma}
|
||||
Let $F$ and $G$ be one-to-one functions.
|
||||
Then $F \circ G$ is one-to-one as well.
|
||||
\end{lemma}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Relation}
|
||||
{Set.Relation.one\_to\_one\_comp\_is\_one\_to\_one}
|
||||
|
||||
\begin{proof}
|
||||
Let $F \colon B \rightarrow C$ and $G \colon A \rightarrow B$ be
|
||||
one-to-one \nameref{ref:function}s from sets $A$, $B$, and $C$.
|
||||
By definition of the \nameref{ref:composition} of functions,
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:one-to-one-composition-eq1}
|
||||
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
|
||||
\end{equation}
|
||||
By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
|
||||
All that remains is proving $F \circ G$ is single-valued, i.e. for each
|
||||
$y \in \ran{F \circ G}$, there is only one $x$ such that
|
||||
$\tuple{x, y} \in F \circ G$.
|
||||
|
||||
To that end let $y \in \ran{(F \circ G)}$.
|
||||
Then there exists some $x_1 \in \dom{(F \circ G)}$ such that
|
||||
$\tuple{x_1, y} \in F \circ G$.
|
||||
Suppose there also exists some $x_2 \in \dom{(F \circ G)}$ such that
|
||||
$\tuple{x_2, y} \in F \circ G$.
|
||||
By \eqref{sub:one-to-one-composition-eq1}, there exists a $t_1$ such that
|
||||
$x_1Gt_1$ and $t_1Fy$.
|
||||
Likewise, there exists some $t_2$ such that $x_2Gt_2$ and $t_2Fy$.
|
||||
But $F$ is one-to-one meaning $t_1 = t_2$.
|
||||
Similarly, $G$ is one-to-one meaning $x_1 = x_2$.
|
||||
Hence $F \circ G$ is single-valued.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Theorem 3I}}%
|
||||
\hyperlabel{sub:theorem-3i}
|
||||
|
||||
|
@ -6232,11 +6280,10 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Lemma 2}}%
|
||||
\hyperlabel{sub:lemma-2}
|
||||
\hyperlabel{sub:succ-add-eq-add-succ}
|
||||
\subsection{\verified{Successor Commutativity}}%
|
||||
\hyperlabel{sub:successor-commutativity}
|
||||
|
||||
\begin{lemma}[2]
|
||||
\begin{lemma}
|
||||
For all $m, n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
|
||||
In other words, $$m^+ + n = m + n^+.$$
|
||||
\end{lemma}
|
||||
|
@ -6314,13 +6361,13 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
Then
|
||||
\begin{align*}
|
||||
m^+ + (n + p)
|
||||
& = m + (n + p)^+ & \textref{sub:succ-add-eq-add-succ} \\
|
||||
& = m + (n + p)^+ & \textref{sub:successor-commutativity} \\
|
||||
& = (m + (n + p))^+ & \textref{sub:theorem-4i} \\
|
||||
& = ((m + n) + p)^+ & \eqref{sub:theorem-4k-1-eq1} \\
|
||||
& = (m + n) + p^+ & \textref{sub:theorem-4i} \\
|
||||
& = (m + n)^+ + p & \textref{sub:succ-add-eq-add-succ} \\
|
||||
& = (m + n)^+ + p & \textref{sub:successor-commutativity} \\
|
||||
& = (m + n^+) + p & \textref{sub:theorem-4i} \\
|
||||
& = (m^+ + n) + p. & \textref{sub:succ-add-eq-add-succ}
|
||||
& = (m^+ + n) + p. & \textref{sub:successor-commutativity}
|
||||
\end{align*}
|
||||
Thus $m^+ \in S$.
|
||||
|
||||
|
@ -6371,7 +6418,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
Then
|
||||
\begin{align*}
|
||||
m^+ + n
|
||||
& = m + n^+ & \textref{sub:succ-add-eq-add-succ} \\
|
||||
& = m + n^+ & \textref{sub:successor-commutativity} \\
|
||||
& = (m + n)^+ & \textref{sub:theorem-4i} \\
|
||||
& = (n + m)^+ & \eqref{sub:theorem-4k-2-eq1} \\
|
||||
& = n + m^+. & \textref{sub:theorem-4i}
|
||||
|
@ -6479,7 +6526,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
& = m^+ \cdot n + m^+ & \textref{sub:theorem-4j} \\
|
||||
& = (m \cdot n + n) + m^+ & \eqref{sub:successor-distribution-eq1} \\
|
||||
& = m \cdot n + (n + m^+) & \textref{sub:theorem-4k-1} \\
|
||||
& = m \cdot n + (n^+ + m) & \textref{sub:succ-add-eq-add-succ} \\
|
||||
& = m \cdot n + (n^+ + m) & \textref{sub:successor-commutativity} \\
|
||||
& = m \cdot n + (m + n^+) & \textref{sub:theorem-4k-2} \\
|
||||
& = (m \cdot n + m) + n^+ & \textref{sub:theorem-4k-1} \\
|
||||
& = m \cdot n^+ + n^+. & \textref{sub:theorem-4j}
|
||||
|
@ -6597,7 +6644,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
Then
|
||||
\begin{align*}
|
||||
m^+ + 1
|
||||
& = m + 1^+ & \textref{sub:succ-add-eq-add-succ} \\
|
||||
& = m + 1^+ & \textref{sub:successor-commutativity} \\
|
||||
& = (m + 1)^+ & \textref{sub:theorem-4i} \\
|
||||
& = (m^+)^+. & \eqref{sub:successor-identity-eq1}
|
||||
\end{align*}
|
||||
|
@ -8395,20 +8442,55 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
\section{Equinumerosity}%
|
||||
\hyperlabel{sec:equinumerosity}
|
||||
|
||||
\subsection{\sorry{Theorem 6A}}%
|
||||
\subsection{\verified{Theorem 6A}}%
|
||||
\hyperlabel{sub:theorem-6a}
|
||||
|
||||
\begin{theorem}[6A]
|
||||
For any sets $A$, $B$, and $C$,
|
||||
\begin{enumerate}[(a)]
|
||||
\item $A \approx A$.
|
||||
\item If $A \approx B$, then $B \approx A$.
|
||||
\item If $A \approx B$ and $B \approx C$, then $A \approx C$.
|
||||
\item $\equinumerous{A}{A}$.
|
||||
\item If $\equinumerous{A}{B}$, then $\equinumerous{B}{A}$.
|
||||
\item If $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$, then
|
||||
$\equinumerous{A}{C}$.
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
||||
{Enderton.Set.Chapter\_6.theorem\_6a\_a}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
||||
{Enderton.Set.Chapter\_6.theorem\_6a\_b}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Chapter\_6}
|
||||
{Enderton.Set.Chapter\_6.theorem\_6a\_c}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
Let $A$, $B$, and $C$ be arbitrary sets.
|
||||
|
||||
\paragraph{(a)}%
|
||||
|
||||
Consider function $I_A \colon A \rightarrow A$ given by $I_A(x) = x$.
|
||||
This function is trivially a bijection between $A$ and $A$.
|
||||
Thus $A$ is \nameref{ref:equinumerous} to $A$.
|
||||
|
||||
\paragraph{(b)}%
|
||||
|
||||
Suppose $\equinumerous{A}{B}$.
|
||||
Then there exists a one-to-one function $f \colon A \rightarrow B$.
|
||||
By \nameref{sub:one-to-one-inverse}, $f^{-1} \colon B \rightarrow A$
|
||||
is also one-to-one.
|
||||
Thus $\equinumerous{B}{A}$.
|
||||
|
||||
\paragraph{(c)}%
|
||||
|
||||
Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
|
||||
Then there exist one-to-one functions $f \colon A \rightarrow B$ and
|
||||
$g \colon B \rightarrow C$.
|
||||
Then, by \nameref{sub:one-to-one-composition},
|
||||
$g \circ f \colon A \rightarrow C$ is one-to-one.
|
||||
Thus $\equinumerous{A}{C}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 6B}}%
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
import Mathlib.Data.Set.Function
|
||||
import Mathlib.Data.Rel
|
||||
|
||||
/-! # Enderton.Set.Chapter_6
|
||||
|
||||
Cardinal Numbers and the Axiom of Choice
|
||||
-/
|
||||
|
||||
namespace Enderton.Set.Chapter_6
|
||||
|
||||
/-! #### Theorem 6A
|
||||
|
||||
For any sets `A`, `B`, and `C`,
|
||||
|
||||
(a) `A ≈ A`.
|
||||
(b) If `A ≈ B`, then `B ≈ A`.
|
||||
(c) If `A ≈ B` and `B ≈ C`, then `A ≈ C`.
|
||||
-/
|
||||
|
||||
theorem theorem_6a_a (A : Set α)
|
||||
: ∃ f, Set.BijOn f A A := by
|
||||
refine ⟨fun x => x, ?_⟩
|
||||
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
|
||||
simp only [imp_self, implies_true, Set.image_id', true_and]
|
||||
exact Eq.subset rfl
|
||||
|
||||
theorem theorem_6a_b [Nonempty α] (A : Set α) (B : Set β)
|
||||
(f : α → β) (hf : Set.BijOn f A B)
|
||||
: ∃ g, Set.BijOn g B A := by
|
||||
refine ⟨Function.invFunOn f A, ?_⟩
|
||||
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hf).mpr hf
|
||||
|
||||
theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ)
|
||||
(f : α → β) (hf : Set.BijOn f A B)
|
||||
(g : β → γ) (hg : Set.BijOn g B C)
|
||||
: ∃ h, Set.BijOn h A C := by
|
||||
exact ⟨g ∘ f, Set.BijOn.comp hg hf⟩
|
||||
|
||||
end Enderton.Set.Chapter_6
|
|
@ -440,6 +440,26 @@ theorem single_valued_comp_is_single_valued
|
|||
have hk₂ := hy'.right y₁ (mem_pair_imp_snd_mem_ran ht₂.right) ht₂.right
|
||||
rw [hk₁, hk₂]
|
||||
|
||||
/--
|
||||
The composition of two one-to-one `Relation`s is one-to-one.
|
||||
-/
|
||||
theorem one_to_one_comp_is_one_to_one
|
||||
{F : HRelation β γ} {G : HRelation α β}
|
||||
(hF : isOneToOne F) (hG : isOneToOne G)
|
||||
: isOneToOne (comp F G) := by
|
||||
refine ⟨single_valued_comp_is_single_valued hF.left hG.left, ?_⟩
|
||||
intro y hy
|
||||
unfold ExistsUnique
|
||||
have ⟨x₁, hx₁⟩ := ran_exists hy
|
||||
refine ⟨x₁, ⟨mem_pair_imp_fst_mem_dom hx₁, hx₁⟩, ?_⟩
|
||||
intro x₂ ⟨_, hx₂⟩
|
||||
have ⟨t₁, ht₁⟩ := hx₁
|
||||
have ⟨t₂, ht₂⟩ := hx₂
|
||||
simp only at ht₁ ht₂
|
||||
have ht : t₁ = t₂ := single_rooted_eq_unique hF.right ht₁.right ht₂.right
|
||||
rw [ht] at ht₁
|
||||
exact single_rooted_eq_unique hG.right ht₂.left ht₁.left
|
||||
|
||||
/--
|
||||
For `Relation`s `F` and `G`, `(F ∘ G)⁻¹ = G⁻¹ ∘ F⁻¹`.
|
||||
-/
|
||||
|
|
|
@ -168,6 +168,7 @@
|
|||
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
||||
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
|
||||
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
||||
\newcommand{\equinumerous}[2]{#1 \approx #2}
|
||||
\newcommand{\fld}[1]{\textop{fld}{#1}}
|
||||
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
||||
\newcommand{\icc}[2]{\left[#1, #2\right]}
|
||||
|
@ -180,7 +181,6 @@
|
|||
\newcommand{\ran}[1]{\textop{ran}{#1}}
|
||||
\newcommand{\textop}[1]{\mathop{\text{#1}}}
|
||||
\newcommand{\tuple}[1]{\left< #1 \right>}
|
||||
|
||||
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
|
||||
|
||||
\let\oldemptyset\emptyset
|
||||
|
|
Loading…
Reference in New Issue