Enderton (logic). Draft up chapter 0 and chapter 1 theorems/exercises.
parent
f40e1fddaa
commit
8f15ec7d6d
|
@ -15,6 +15,45 @@
|
||||||
\chapter{Reference}%
|
\chapter{Reference}%
|
||||||
\hyperlabel{chap:reference}
|
\hyperlabel{chap:reference}
|
||||||
|
|
||||||
|
\section{\defined{Construction Sequence}}%
|
||||||
|
\hyperlabel{ref:construction-sequence}
|
||||||
|
|
||||||
|
A \textbf{construction sequence} is a finite sequence
|
||||||
|
$\langle \epsilon_1, \ldots, \epsilon_n \rangle$ of expressions such that for
|
||||||
|
each $i \leq n$ we have at least one of
|
||||||
|
\begin{align*}
|
||||||
|
& \epsilon_i \text{ is a sentence symbol} \\
|
||||||
|
& \epsilon_i = \mathcal{E}_\neg(\epsilon_j) \text{ for some } j < i \\
|
||||||
|
& \epsilon_i = \mathcal{E}_\square(\epsilon_j, \epsilon_k)
|
||||||
|
\text{ for some } j < i, k < i
|
||||||
|
\end{align*}
|
||||||
|
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
||||||
|
$\Rightarrow$, $\Leftrightarrow$.
|
||||||
|
|
||||||
|
\section{\defined{Expression}}%
|
||||||
|
\hyperlabel{ref:expression}
|
||||||
|
|
||||||
|
An \textbf{expression} is a finite sequence of symbols.
|
||||||
|
|
||||||
|
\section{\defined{Well-Formed Formula}}%
|
||||||
|
\hyperlabel{ref:well-formed-formula}
|
||||||
|
|
||||||
|
An \nameref{ref:expression} that can be built up from the sentence symbols by
|
||||||
|
applying some finite number of times the \textbf{formula-building operations}
|
||||||
|
(on expressions) defined by the equations:
|
||||||
|
\begin{align*}
|
||||||
|
\mathcal{E}_{\neg}(\alpha)
|
||||||
|
& = (\neg \alpha) \\
|
||||||
|
\mathcal{E}_{\land}(\alpha, \beta)
|
||||||
|
& = (\alpha \land \beta) \\
|
||||||
|
\mathcal{E}_{\lor}(\alpha, \beta)
|
||||||
|
& = (\alpha \lor \beta) \\
|
||||||
|
\mathcal{E}_{\Rightarrow}(\alpha, \beta)
|
||||||
|
& = (\alpha \Rightarrow \beta) \\
|
||||||
|
\mathcal{E}_{\Leftrightarrow}(\alpha, \beta)
|
||||||
|
& = (\alpha \Leftrightarrow \beta)
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\endgroup
|
\endgroup
|
||||||
|
|
||||||
% Reset counter to mirror Enderton's book.
|
% Reset counter to mirror Enderton's book.
|
||||||
|
@ -26,8 +65,134 @@
|
||||||
\section{\sorry{Lemma 0A}}%
|
\section{\sorry{Lemma 0A}}%
|
||||||
\hyperlabel{sec:lemma-0a}
|
\hyperlabel{sec:lemma-0a}
|
||||||
|
|
||||||
|
\begin{lemma}[0A]
|
||||||
|
|
||||||
Assume that $\langle x_1, \ldots, x_m \rangle =
|
Assume that $\langle x_1, \ldots, x_m \rangle =
|
||||||
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||||||
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
||||||
|
|
||||||
|
\end{lemma}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\chapter{Sentential Logic}%
|
||||||
|
\hyperlabel{chap:sentential-logic}
|
||||||
|
|
||||||
|
\section{The Language of Sentential Logic}%
|
||||||
|
\hyperlabel{sec:language-sentential-logic}
|
||||||
|
|
||||||
|
\subsection{\sorry{Induction Principle}}%
|
||||||
|
\hyperlabel{sub:induction-principle-1}
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
|
||||||
|
If $S$ is a set of wffs containing all the sentence symbols and closed under all
|
||||||
|
five formula-building operations, then $S$ is the set of \textit{all} wffs.
|
||||||
|
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\section{Exercises 1}%
|
||||||
|
\hyperlabel{sec:exercises-1}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 1.1}}%
|
||||||
|
\hyperlabel{sub:exercise-1.1}
|
||||||
|
|
||||||
|
Give three sentences in English together with translations into our formal
|
||||||
|
language.
|
||||||
|
The sentences shoudl be chosen so as to have an interesting structure, and the
|
||||||
|
translations should each contain 15 or more symbols.
|
||||||
|
|
||||||
|
\begin{answer}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{answer}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 1.2}}%
|
||||||
|
\hyperlabel{sub:exercise-1.2}
|
||||||
|
|
||||||
|
Show that there are no wffs of length 2, 3, or 6, but that any other positive
|
||||||
|
length is possible.
|
||||||
|
|
||||||
|
\begin{answer}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{answer}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 1.3}}%
|
||||||
|
\hyperlabel{sub:exercise-1.3}
|
||||||
|
|
||||||
|
Let $\alpha$ be a wff; let $c$ be the number of places at which binary
|
||||||
|
connective symbols $(\land, \lor, \Rightarrow, \Leftrightarrow)$ occur in
|
||||||
|
$\alpha$; let $s$ be the number of places at which sentence symbols occur in
|
||||||
|
$\alpha$.
|
||||||
|
(For exmaple, if $\alpha$ is $(A \Rightarrow (\neg A))$ then $c = 1$ and $s = 2$.)
|
||||||
|
Show by using the induction principle that $s = c + 1$.
|
||||||
|
|
||||||
|
\begin{answer}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{answer}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 1.4}}%
|
||||||
|
\hyperlabel{sub:exercise-1.4}
|
||||||
|
|
||||||
|
Assume we have a construction sequence ending in $\phi$, where $\phi$ does not
|
||||||
|
contain the symbol $A_4$.
|
||||||
|
Suppose we delete all the expressions in the construction sequence that contain
|
||||||
|
$A_4$.
|
||||||
|
Show that the result is still a legal construction sequence.
|
||||||
|
|
||||||
|
\begin{answer}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{answer}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 1.5}}%
|
||||||
|
\hyperlabel{sub:exercise-1.5}
|
||||||
|
|
||||||
|
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item Show that the length of $\alpha$ (i.e., the number of symbols in the
|
||||||
|
string) is odd.
|
||||||
|
\item Show that more than a quarter of the symbols are sentence symbols.
|
||||||
|
\end{enumerate}
|
||||||
|
\textit{Suggestion}: Apply induction to show that the length is of the form
|
||||||
|
$4k + 1$ and the number of sentence symbols is $k + 1$.
|
||||||
|
|
||||||
|
\begin{answer}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{answer}
|
||||||
|
|
||||||
|
\subsection{\sorry{Exercise 1.6}}%
|
||||||
|
\hyperlabel{sub:exercise-1.6}
|
||||||
|
|
||||||
|
Suppose that $\alpha$ is a wff not containing the negation symbol $\neg$.
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item Show that the length of $\alpha$ (i.e., the number of symbols in the
|
||||||
|
string) is odd.
|
||||||
|
\item Show that more than a quarter of the symbols are sentence symbols.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\begin{answer}
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
\end{answer}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Reference in New Issue