Remove "nil" tuple.

finite-set-exercises
Joshua Potter 2023-02-20 18:19:12 -07:00
parent c92dee8e3d
commit 89f22ea1b8
1 changed files with 8 additions and 11 deletions

View File

@ -14,16 +14,17 @@ An n-tuple is defined recursively as:
⟨x₁, ..., xₙ₊₁⟩ = ⟨⟨x₁, ..., xₙ⟩, xₙ₊₁⟩ ⟨x₁, ..., xₙ₊₁⟩ = ⟨⟨x₁, ..., xₙ⟩, xₙ₊₁⟩
As [1] notes, it is also useful to define ⟨x⟩ = x. TODO: As [1] notes, it is useful to define ⟨x⟩ = x. Is this syntactically
possible in Lean?
--/ --/
inductive Tuple (α : Type u) : Nat → Type u where inductive Tuple : (α : Type u) → Nat → Type u where
| nil : Tuple α 0 | only : α → Tuple α 1
| cons : {n : Nat} → Tuple α n → α → Tuple α (n + 1) | cons : {n : Nat} → Tuple α n → α → Tuple α (n + 1)
syntax (priority := high) "⟨" term,+ "⟩" : term syntax (priority := high) "⟨" term,+ "⟩" : term
macro_rules macro_rules
| `(⟨$x⟩) => `(Tuple.cons Tuple.nil $x) | `(⟨$x⟩) => `(Tuple.only $x)
| `(⟨$xs:term,*, $x⟩) => `(Tuple.cons ⟨$xs,*⟩ $x) | `(⟨$xs:term,*, $x⟩) => `(Tuple.cons ⟨$xs,*⟩ $x)
namespace Tuple namespace Tuple
@ -34,10 +35,7 @@ Returns the value at the nth-index of the given tuple.
def index (t : Tuple α n) (m : Nat) : 1 ≤ m ∧ m ≤ n → α := by def index (t : Tuple α n) (m : Nat) : 1 ≤ m ∧ m ≤ n → α := by
intro h intro h
cases t cases t
· case nil => · case only last => exact last
have ff : 1 ≤ 0 := Nat.le_trans h.left h.right
ring_nf at ff
exact False.elim ff
. case cons n' init last => . case cons n' init last =>
by_cases k : m = n' + 1 by_cases k : m = n' + 1
· exact last · exact last
@ -46,7 +44,8 @@ def index (t : Tuple α n) (m : Nat) : 1 ≤ m ∧ m ≤ n → α := by
norm_num at h₂ norm_num at h₂
exact h₂)) exact h₂))
-- TODO: Prove the following theorem -- TODO: Prove `eq_by_index`.
-- TODO: Prove Lemma 0A [1].
theorem eq_by_index (t₁ t₂ : Tuple α n) theorem eq_by_index (t₁ t₂ : Tuple α n)
: (t₁ = t₂) ↔ (∀ i : Nat, 1 ≤ i ∧ i ≤ n → index t₁ i = index t₂ i) := by : (t₁ = t₂) ↔ (∀ i : Nat, 1 ≤ i ∧ i ≤ n → index t₁ i = index t₂ i) := by
@ -54,6 +53,4 @@ theorem eq_by_index (t₁ t₂ : Tuple α n)
· sorry · sorry
· sorry · sorry
-- TODO: [1] Lemma 0A
end Tuple end Tuple