Enderton. Exercise 3.19.

finite-set-exercises
Joshua Potter 2023-07-06 07:31:13 -06:00
parent 0e55484adc
commit 874bbe203c
2 changed files with 285 additions and 3 deletions

View File

@ -4227,7 +4227,7 @@ Evaluate the following: $R \circ R$, $R \restriction \{1\}$,
\end{proof}
\subsection{\pending{Exercise 3.19}}%
\subsection{\verified{Exercise 3.19}}%
\label{sub:exercise-3.19}
Let $$A = \{
@ -4242,6 +4242,38 @@ Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$,
\begin{proof}
\statementpadding
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_i}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_ii}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_iii}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_iv}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_v}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_vi}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_vii}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_viii}
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_ix}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_3\_19\_x}
\begin{enumerate}[(i)]
\item $A(\emptyset) = \{\emptyset, \{\emptyset\}\}$.
\item $\img{A}{\emptyset} = \emptyset$.

View File

@ -923,7 +923,7 @@ Evaluate the following: `R ∘ R`, `R ↾ {1}`, `R⁻¹ ↾ {1}`, `R⟦{1}⟧`,
`R⁻¹⟦{1}⟧`.
-/
section
section Exercise_3_18
variable {R : Set.Relation }
variable (hR : R = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)})
@ -1044,7 +1044,257 @@ theorem exercise_3_18_v
ext y
simp
end
end Exercise_3_18
/-! #### Exercise 3.19
Let
```
A = {⟨∅, {∅, {∅}}⟩, ⟨{∅}, ∅⟩}.
```
Evaluate each of the following: `A(∅)`, `A⟦∅⟧`, `A⟦{∅}⟧`, `A⟦{∅, {∅}}⟧`,
`A⁻¹`, `A ∘ A`, `A ↾ ∅`, `A ↾ {∅, {∅}}`, ` A`.
-/
section Exercise_3_19
variable {A : Set.Relation (Set (Set (Set α)))}
variable (hA : A = {(∅, {∅, {∅}}), ({∅}, ∅)})
theorem exercise_3_19_i
: (∅, {∅, {∅}}) ∈ A := by
rw [hA]
simp
theorem exercise_3_19_ii
: A.image ∅ = ∅ := by
unfold image
simp
theorem exercise_3_19_iii
: A.image {∅} = {{∅, {∅}}} := by
unfold image
rw [hA]
ext x
simp only [
Set.mem_singleton_iff,
Prod.mk.injEq,
Set.mem_insert_iff,
exists_eq_left,
true_and
]
apply Iff.intro
· intro hx
simp at hx
apply Or.elim hx
· simp
· intro ⟨h, _⟩
exfalso
rw [Set.ext_iff] at h
have := h ∅
simp at this
· intro hx
rw [hx]
simp
theorem exercise_3_19_iv
: A.image {∅, {∅}} = {{∅, {∅}}, ∅} := by
unfold image
rw [hA]
ext x
simp only [
Set.mem_singleton_iff,
Set.mem_insert_iff,
Prod.mk.injEq,
exists_eq_or_imp,
true_and,
exists_eq_left,
Set.singleton_ne_empty,
false_and,
false_or,
Set.mem_setOf_eq
]
apply Iff.intro
· intro h
apply Or.elim h
· intro hx₁
apply Or.elim hx₁
· intro hx₂; left ; exact hx₂
· intro hx₂; right; exact hx₂.right
· intro hx₂
right
exact hx₂
· intro h
apply Or.elim h
· intro hx₁; iterate 2 left
exact hx₁
· intro hx₁; right; exact hx₁
theorem exercise_3_19_v
: A.inv = {({∅, {∅}}, ∅), (∅, {∅})} := by
unfold inv
rw [hA]
ext x
simp only [
Set.mem_singleton_iff,
Prod.mk.injEq,
Set.mem_insert_iff,
exists_eq_or_imp,
exists_eq_left,
Set.mem_setOf_eq
]
apply Iff.intro
· intro hx
apply Or.elim hx
· intro hx₁; left ; rw [← hx₁]
· intro hx₁; right; rw [← hx₁]
· intro hx
apply Or.elim hx
· intro hx₁; left ; rw [← hx₁]
· intro hx₁; right; rw [← hx₁]
theorem exercise_3_19_vi
: A.comp A = {({∅}, {∅, {∅}})} := by
unfold comp
rw [hA]
ext x
have (a, b) := x
simp only [
Set.mem_singleton_iff, Prod.mk.injEq, Set.mem_insert_iff, Set.mem_setOf_eq
]
apply Iff.intro
· intro ⟨t, ht₁, ht₂⟩
casesm* _ _
all_goals case _ hl hr => first
| {
rw [hl.right] at hr
have := hr.left
rw [Set.ext_iff] at this
simp at this
}
| exact ⟨hl.left, hr.right⟩
· intro ⟨ha, hb⟩
refine ⟨∅, ?_, ?_⟩
· right; rw [ha]; simp
· left ; rw [hb]; simp
theorem exercise_3_19_vii
: A.restriction ∅ = ∅ := by
unfold restriction
rw [hA]
simp
theorem exercise_3_19_viii
: A.restriction {∅} = {(∅, {∅, {∅}})} := by
unfold restriction
rw [hA]
ext x
have (a, b) := x
simp only [
Set.mem_singleton_iff, Prod.mk.injEq, Set.mem_insert_iff, Set.mem_setOf_eq
]
apply Iff.intro
· intro ⟨h, ha⟩
apply Or.elim h
· simp
· intro ⟨ha', _⟩
exfalso
rw [ha', Set.ext_iff] at ha
simp at ha
· intro ⟨ha, hb⟩
rw [ha, hb]
simp
theorem exercise_3_19_ix
: A.restriction {∅, {∅}} = A := by
unfold restriction
rw [hA]
ext x
have (a, b) := x
simp only [
Set.mem_singleton_iff,
Prod.mk.injEq,
Set.mem_insert_iff,
Set.mem_setOf_eq
]
apply Iff.intro
· intro ⟨h₁, h₂⟩
casesm* _ _
· case _ hl _ => left ; exact hl
· case _ hl _ => left ; exact hl
· case _ hl _ => right; exact hl
· case _ hl _ => right; exact hl
· intro h₁
apply Or.elim h₁ <;>
· intro ⟨ha, hb⟩
rw [ha, hb]
simp
theorem exercise_3_19_x
: ⋃₀ ⋃₀ A.toOrderedPairs = {∅, {∅}, {∅, {∅}}} := by
unfold toOrderedPairs OrderedPair Set.sUnion sSup Set.instSupSetSet
rw [hA]
ext x
simp only [
Set.mem_singleton_iff,
Prod.mk.injEq,
Set.mem_image,
Set.mem_insert_iff,
exists_eq_or_imp,
exists_eq_left,
Set.singleton_ne_empty,
Set.mem_setOf_eq
]
apply Iff.intro
· intro ⟨a, ⟨t, ht₁, ht₂⟩, hx⟩
apply Or.elim ht₁
· intro ht
rw [← ht] at ht₂
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at ht₂
apply Or.elim ht₂
· intro ha
rw [ha] at hx
simp only [Set.mem_singleton_iff] at hx
left
exact hx
· intro ha
rw [ha] at hx
simp at hx
apply Or.elim hx <;>
· intro hx'; rw [hx']; simp
· intro ht
rw [← ht] at ht₂
simp only [
Set.mem_singleton_iff, Set.singleton_ne_empty, Set.mem_insert_iff
] at ht₂
apply Or.elim ht₂
· intro ha
rw [ha] at hx
simp only [Set.mem_singleton_iff] at hx
rw [hx]
simp
· intro ha
rw [ha] at hx
simp only [
Set.mem_singleton_iff, Set.singleton_ne_empty, Set.mem_insert_iff
] at hx
apply Or.elim hx <;>
· intro hx'; rw [hx']; simp
· intro hx
apply Or.elim hx
· intro hx₁
rw [hx₁]
refine ⟨{{∅}, ∅}, ⟨{{{∅}}, {{∅}, ∅}}, ?_⟩, ?_⟩ <;> simp
· intro hx₁
apply Or.elim hx₁
· intro hx₂
rw [hx₂]
refine ⟨{{∅}, ∅}, ⟨{{{∅}}, {{∅}, ∅}}, ?_⟩, ?_⟩ <;> simp
· intro hx₂
rw [hx₂]
refine ⟨{∅, {∅, {∅}}}, ⟨{{∅}, {∅, {∅, {∅}}}}, ?_⟩, ?_⟩ <;> simp
end Exercise_3_19
end Relation