Enderton. Exercise 3.19.
parent
0e55484adc
commit
874bbe203c
|
@ -4227,7 +4227,7 @@ Evaluate the following: $R \circ R$, $R \restriction \{1\}$,
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\pending{Exercise 3.19}}%
|
\subsection{\verified{Exercise 3.19}}%
|
||||||
\label{sub:exercise-3.19}
|
\label{sub:exercise-3.19}
|
||||||
|
|
||||||
Let $$A = \{
|
Let $$A = \{
|
||||||
|
@ -4242,6 +4242,38 @@ Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$,
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
|
\statementpadding
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_i}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_ii}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_iii}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_iv}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_v}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_vi}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_vii}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_viii}
|
||||||
|
|
||||||
|
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_ix}
|
||||||
|
|
||||||
|
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_3\_19\_x}
|
||||||
|
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
\item $A(\emptyset) = \{\emptyset, \{\emptyset\}\}$.
|
\item $A(\emptyset) = \{\emptyset, \{\emptyset\}\}$.
|
||||||
\item $\img{A}{\emptyset} = \emptyset$.
|
\item $\img{A}{\emptyset} = \emptyset$.
|
||||||
|
|
|
@ -923,7 +923,7 @@ Evaluate the following: `R ∘ R`, `R ↾ {1}`, `R⁻¹ ↾ {1}`, `R⟦{1}⟧`,
|
||||||
`R⁻¹⟦{1}⟧`.
|
`R⁻¹⟦{1}⟧`.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
section
|
section Exercise_3_18
|
||||||
|
|
||||||
variable {R : Set.Relation ℕ}
|
variable {R : Set.Relation ℕ}
|
||||||
variable (hR : R = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)})
|
variable (hR : R = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)})
|
||||||
|
@ -1044,7 +1044,257 @@ theorem exercise_3_18_v
|
||||||
ext y
|
ext y
|
||||||
simp
|
simp
|
||||||
|
|
||||||
end
|
end Exercise_3_18
|
||||||
|
|
||||||
|
/-! #### Exercise 3.19
|
||||||
|
|
||||||
|
Let
|
||||||
|
```
|
||||||
|
A = {⟨∅, {∅, {∅}}⟩, ⟨{∅}, ∅⟩}.
|
||||||
|
```
|
||||||
|
Evaluate each of the following: `A(∅)`, `A⟦∅⟧`, `A⟦{∅}⟧`, `A⟦{∅, {∅}}⟧`,
|
||||||
|
`A⁻¹`, `A ∘ A`, `A ↾ ∅`, `A ↾ {∅, {∅}}`, `⋃ ⋃ A`.
|
||||||
|
-/
|
||||||
|
|
||||||
|
section Exercise_3_19
|
||||||
|
|
||||||
|
variable {A : Set.Relation (Set (Set (Set α)))}
|
||||||
|
variable (hA : A = {(∅, {∅, {∅}}), ({∅}, ∅)})
|
||||||
|
|
||||||
|
theorem exercise_3_19_i
|
||||||
|
: (∅, {∅, {∅}}) ∈ A := by
|
||||||
|
rw [hA]
|
||||||
|
simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_ii
|
||||||
|
: A.image ∅ = ∅ := by
|
||||||
|
unfold image
|
||||||
|
simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_iii
|
||||||
|
: A.image {∅} = {{∅, {∅}}} := by
|
||||||
|
unfold image
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff,
|
||||||
|
Prod.mk.injEq,
|
||||||
|
Set.mem_insert_iff,
|
||||||
|
exists_eq_left,
|
||||||
|
true_and
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro hx
|
||||||
|
simp at hx
|
||||||
|
apply Or.elim hx
|
||||||
|
· simp
|
||||||
|
· intro ⟨h, _⟩
|
||||||
|
exfalso
|
||||||
|
rw [Set.ext_iff] at h
|
||||||
|
have := h ∅
|
||||||
|
simp at this
|
||||||
|
· intro hx
|
||||||
|
rw [hx]
|
||||||
|
simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_iv
|
||||||
|
: A.image {∅, {∅}} = {{∅, {∅}}, ∅} := by
|
||||||
|
unfold image
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff,
|
||||||
|
Set.mem_insert_iff,
|
||||||
|
Prod.mk.injEq,
|
||||||
|
exists_eq_or_imp,
|
||||||
|
true_and,
|
||||||
|
exists_eq_left,
|
||||||
|
Set.singleton_ne_empty,
|
||||||
|
false_and,
|
||||||
|
false_or,
|
||||||
|
Set.mem_setOf_eq
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro h
|
||||||
|
apply Or.elim h
|
||||||
|
· intro hx₁
|
||||||
|
apply Or.elim hx₁
|
||||||
|
· intro hx₂; left ; exact hx₂
|
||||||
|
· intro hx₂; right; exact hx₂.right
|
||||||
|
· intro hx₂
|
||||||
|
right
|
||||||
|
exact hx₂
|
||||||
|
· intro h
|
||||||
|
apply Or.elim h
|
||||||
|
· intro hx₁; iterate 2 left
|
||||||
|
exact hx₁
|
||||||
|
· intro hx₁; right; exact hx₁
|
||||||
|
|
||||||
|
theorem exercise_3_19_v
|
||||||
|
: A.inv = {({∅, {∅}}, ∅), (∅, {∅})} := by
|
||||||
|
unfold inv
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff,
|
||||||
|
Prod.mk.injEq,
|
||||||
|
Set.mem_insert_iff,
|
||||||
|
exists_eq_or_imp,
|
||||||
|
exists_eq_left,
|
||||||
|
Set.mem_setOf_eq
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro hx
|
||||||
|
apply Or.elim hx
|
||||||
|
· intro hx₁; left ; rw [← hx₁]
|
||||||
|
· intro hx₁; right; rw [← hx₁]
|
||||||
|
· intro hx
|
||||||
|
apply Or.elim hx
|
||||||
|
· intro hx₁; left ; rw [← hx₁]
|
||||||
|
· intro hx₁; right; rw [← hx₁]
|
||||||
|
|
||||||
|
theorem exercise_3_19_vi
|
||||||
|
: A.comp A = {({∅}, {∅, {∅}})} := by
|
||||||
|
unfold comp
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
have (a, b) := x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff, Prod.mk.injEq, Set.mem_insert_iff, Set.mem_setOf_eq
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨t, ht₁, ht₂⟩
|
||||||
|
casesm* _ ∨ _
|
||||||
|
all_goals case _ hl hr => first
|
||||||
|
| {
|
||||||
|
rw [hl.right] at hr
|
||||||
|
have := hr.left
|
||||||
|
rw [Set.ext_iff] at this
|
||||||
|
simp at this
|
||||||
|
}
|
||||||
|
| exact ⟨hl.left, hr.right⟩
|
||||||
|
· intro ⟨ha, hb⟩
|
||||||
|
refine ⟨∅, ?_, ?_⟩
|
||||||
|
· right; rw [ha]; simp
|
||||||
|
· left ; rw [hb]; simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_vii
|
||||||
|
: A.restriction ∅ = ∅ := by
|
||||||
|
unfold restriction
|
||||||
|
rw [hA]
|
||||||
|
simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_viii
|
||||||
|
: A.restriction {∅} = {(∅, {∅, {∅}})} := by
|
||||||
|
unfold restriction
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
have (a, b) := x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff, Prod.mk.injEq, Set.mem_insert_iff, Set.mem_setOf_eq
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨h, ha⟩
|
||||||
|
apply Or.elim h
|
||||||
|
· simp
|
||||||
|
· intro ⟨ha', _⟩
|
||||||
|
exfalso
|
||||||
|
rw [ha', Set.ext_iff] at ha
|
||||||
|
simp at ha
|
||||||
|
· intro ⟨ha, hb⟩
|
||||||
|
rw [ha, hb]
|
||||||
|
simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_ix
|
||||||
|
: A.restriction {∅, {∅}} = A := by
|
||||||
|
unfold restriction
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
have (a, b) := x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff,
|
||||||
|
Prod.mk.injEq,
|
||||||
|
Set.mem_insert_iff,
|
||||||
|
Set.mem_setOf_eq
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨h₁, h₂⟩
|
||||||
|
casesm* _ ∨ _
|
||||||
|
· case _ hl _ => left ; exact hl
|
||||||
|
· case _ hl _ => left ; exact hl
|
||||||
|
· case _ hl _ => right; exact hl
|
||||||
|
· case _ hl _ => right; exact hl
|
||||||
|
· intro h₁
|
||||||
|
apply Or.elim h₁ <;>
|
||||||
|
· intro ⟨ha, hb⟩
|
||||||
|
rw [ha, hb]
|
||||||
|
simp
|
||||||
|
|
||||||
|
theorem exercise_3_19_x
|
||||||
|
: ⋃₀ ⋃₀ A.toOrderedPairs = {∅, {∅}, {∅, {∅}}} := by
|
||||||
|
unfold toOrderedPairs OrderedPair Set.sUnion sSup Set.instSupSetSet
|
||||||
|
rw [hA]
|
||||||
|
ext x
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff,
|
||||||
|
Prod.mk.injEq,
|
||||||
|
Set.mem_image,
|
||||||
|
Set.mem_insert_iff,
|
||||||
|
exists_eq_or_imp,
|
||||||
|
exists_eq_left,
|
||||||
|
Set.singleton_ne_empty,
|
||||||
|
Set.mem_setOf_eq
|
||||||
|
]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨a, ⟨t, ht₁, ht₂⟩, hx⟩
|
||||||
|
apply Or.elim ht₁
|
||||||
|
· intro ht
|
||||||
|
rw [← ht] at ht₂
|
||||||
|
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at ht₂
|
||||||
|
apply Or.elim ht₂
|
||||||
|
· intro ha
|
||||||
|
rw [ha] at hx
|
||||||
|
simp only [Set.mem_singleton_iff] at hx
|
||||||
|
left
|
||||||
|
exact hx
|
||||||
|
· intro ha
|
||||||
|
rw [ha] at hx
|
||||||
|
simp at hx
|
||||||
|
apply Or.elim hx <;>
|
||||||
|
· intro hx'; rw [hx']; simp
|
||||||
|
· intro ht
|
||||||
|
rw [← ht] at ht₂
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff, Set.singleton_ne_empty, Set.mem_insert_iff
|
||||||
|
] at ht₂
|
||||||
|
apply Or.elim ht₂
|
||||||
|
· intro ha
|
||||||
|
rw [ha] at hx
|
||||||
|
simp only [Set.mem_singleton_iff] at hx
|
||||||
|
rw [hx]
|
||||||
|
simp
|
||||||
|
· intro ha
|
||||||
|
rw [ha] at hx
|
||||||
|
simp only [
|
||||||
|
Set.mem_singleton_iff, Set.singleton_ne_empty, Set.mem_insert_iff
|
||||||
|
] at hx
|
||||||
|
apply Or.elim hx <;>
|
||||||
|
· intro hx'; rw [hx']; simp
|
||||||
|
· intro hx
|
||||||
|
apply Or.elim hx
|
||||||
|
· intro hx₁
|
||||||
|
rw [hx₁]
|
||||||
|
refine ⟨{{∅}, ∅}, ⟨{{{∅}}, {{∅}, ∅}}, ?_⟩, ?_⟩ <;> simp
|
||||||
|
· intro hx₁
|
||||||
|
apply Or.elim hx₁
|
||||||
|
· intro hx₂
|
||||||
|
rw [hx₂]
|
||||||
|
refine ⟨{{∅}, ∅}, ⟨{{{∅}}, {{∅}, ∅}}, ?_⟩, ?_⟩ <;> simp
|
||||||
|
· intro hx₂
|
||||||
|
rw [hx₂]
|
||||||
|
refine ⟨{∅, {∅, {∅}}}, ⟨{{∅}, {∅, {∅, {∅}}}}, ?_⟩, ?_⟩ <;> simp
|
||||||
|
|
||||||
|
end Exercise_3_19
|
||||||
|
|
||||||
end Relation
|
end Relation
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue