Enderton. Lean references of definitions and more exercises.
parent
140195a8ee
commit
86abd77523
|
@ -20,25 +20,43 @@
|
|||
\chapter{Reference}%
|
||||
\label{chap:reference}
|
||||
|
||||
\section{\pending{Axiom of Choice, First Form}}%
|
||||
\section{\defined{Axiom of Choice, First Form}}%
|
||||
\label{ref:axiom-of-choice-1}
|
||||
|
||||
For any relation $R$ there is a function $H \subseteq R$ with
|
||||
$\dom{H} = \dom{R}$.
|
||||
|
||||
\section{\pending{Axiom of Choice, Second Form}}%
|
||||
\begin{axiom}
|
||||
|
||||
\lean*{Init/Prelude}{Classical.choice}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section{\defined{Axiom of Choice, Second Form}}%
|
||||
\label{ref:axiom-of-choice-2}
|
||||
|
||||
For any set $I$ and any function $H$ with domain $I$, if $H(i) \neq \emptyset$
|
||||
for all $i \in I$, then $$\bigtimes_{i \in I} H(i) \neq \emptyset.$$
|
||||
|
||||
\section{\pending{Compatible}}%
|
||||
\begin{axiom}
|
||||
|
||||
\lean*{Init/Prelude}{Classical.choice}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section{\defined{Compatible}}%
|
||||
\label{sec:compatible}
|
||||
|
||||
A \nameref{ref:function} $F$ is \textbf{compatible} with relation $R$ if and
|
||||
only if for all $x$ and $y$ in $A$,
|
||||
$$xRy \Rightarrow F(x)RF(y).$$
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Core}{Quotient.lift}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Composition}}%
|
||||
\label{ref:composition}
|
||||
|
||||
|
@ -75,13 +93,19 @@ There is a set having no members:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\pending{Equivalence Relation}}%
|
||||
\section{\defined{Equivalence Relation}}%
|
||||
\label{ref:equivalence-relation}
|
||||
|
||||
Relation $R$ is an \textbf{equivalence relation} on set $A$ if and only if
|
||||
$R$ is a binary \nameref{ref:relation} that is \nameref{ref:reflexive} on $A$,
|
||||
\nameref{ref:symmetric}, and \nameref{ref:transitive}.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Core}{Equivalence}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Extensionality Axiom}}%
|
||||
\label{ref:extensionality-axiom}
|
||||
|
||||
|
@ -209,7 +233,7 @@ For any sets $u$ and $v$, there is a set having as members just $u$ and $v$:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\pending{Partition}}%
|
||||
\section{\defined{Partition}}%
|
||||
\label{ref:partition}
|
||||
|
||||
A \textbf{partition} $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that
|
||||
|
@ -219,6 +243,12 @@ A \textbf{partition} $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that
|
|||
\item each element of $A$ is in some set in $\Pi$.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Mathlib/Data/Setoid/Partition}{Setoid.IsPartition}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Power Set}}%
|
||||
\label{ref:power-set}
|
||||
|
||||
|
@ -243,7 +273,7 @@ For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\pending{Quotient Set}}%
|
||||
\section{\defined{Quotient Set}}%
|
||||
\label{ref:quotient-set}
|
||||
|
||||
If $R$ is an \nameref{ref:equivalence-relation} on set $A$, then we can define
|
||||
|
@ -251,6 +281,12 @@ If $R$ is an \nameref{ref:equivalence-relation} on set $A$, then we can define
|
|||
the equivalence classes.
|
||||
The expression $A / R$ is read "$A$ modulo $R$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Core}{Quotient}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Range}}%
|
||||
\label{ref:range}
|
||||
|
||||
|
@ -263,12 +299,18 @@ The \textbf{range} of set $R$, denoted $\ran{R}$, is given by
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\pending{Reflexive}}%
|
||||
\section{\defined{Reflexive}}%
|
||||
\label{ref:reflexive}
|
||||
|
||||
A binary relation $R$ is \textbf{reflexive} on $A$ if and only if $xRx$ for all
|
||||
$x \in A$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Core}{Equivalence.refl}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Relation}}%
|
||||
\label{ref:relation}
|
||||
|
||||
|
@ -305,12 +347,18 @@ For each formula $\phi$ not containing $B$, the following is an axiom:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\pending{Symmetric}}%
|
||||
\section{\defined{Symmetric}}%
|
||||
\label{ref:symmetric}
|
||||
|
||||
A binary relation $R$ is \textbf{symmetric} if and only if whenever $xRy$ then
|
||||
$yRx$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Core}{Equivalence.symm}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Symmetric Difference}}%
|
||||
\label{ref:symmetric-difference}
|
||||
|
||||
|
@ -323,12 +371,18 @@ The \textbf{symmetric difference} $A + B$ of sets $A$ and $B$ is the set
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\pending{Transitive}}%
|
||||
\section{\defined{Transitive}}%
|
||||
\label{ref:transitive}
|
||||
|
||||
A binary relation $R$ is \textbf{transitive} if and only if whenever $xRy$ and
|
||||
$yRz$, then $xRz$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Core}{Equivalence.trans}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Union Axiom}}%
|
||||
\label{ref:union-axiom}
|
||||
|
||||
|
@ -4406,32 +4460,82 @@ Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 3.28}}%
|
||||
\subsection{\pending{Exercise 3.28}}%
|
||||
\label{sub:exercise-3.28}
|
||||
|
||||
Assume that $f$ is a one-to-one function from $A$ into $B$, and that $G$ is the
|
||||
function with $\dom{G} = \powerset{A}$ defined by the equation
|
||||
$G(X) = \img{f}{x}$.
|
||||
$G(X) = \img{f}{X}$.
|
||||
Show that $G$ maps $\powerset{A}$ one-to-one into $\powerset{B}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
By construction, $\dom{G} = \powerset{A}$.
|
||||
Likewise, $\ran{G} \subseteq \powerset{B}$ by definition of the
|
||||
\nameref{ref:image} of sets.
|
||||
Let $y \in \ran{G}$.
|
||||
Then there exists an $X_1 \in \powerset{A}$ such that $\img{f}{X_1} = y$.
|
||||
To prove $G$ is one-to-one into $\powerset{B}$, assume there exists an
|
||||
$X_2 \in \powerset{A}$ such that $\img{f}{X_2} = y$.
|
||||
All that remains is showing $X_1 = X_2$.
|
||||
|
||||
Let $t \in X_1$.
|
||||
By definition of the \nameref{ref:image} of a set, $f(t) \in \img{f}{X_1}$.
|
||||
Since $\img{f}{X_1} = \img{f}{X_2}$, it follows $f(t) \in \img{f}{X_2}$.
|
||||
Because $f$ is one-to-one, $f(t) \in \img{f}{X_2}$ if and only if $t \in X_2$.
|
||||
Thus $t \in X_1$ if and only if $t \in X_2$.
|
||||
By the \nameref{ref:extensionality-axiom}, it follows $X_1 = X_2$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 3.29}}%
|
||||
\subsection{\pending{Exercise 3.29}}%
|
||||
\label{sub:exercise-3.29}
|
||||
|
||||
Assume that $f \colon A \rightarrow B$ and define a function
|
||||
$G \colon B \rightarrow \powerset{A}$ by
|
||||
$$G(b) = \{x \in A \mid f(x) = b\}.$$
|
||||
\begin{equation}
|
||||
\label{sub:exercise-3.29-eq1}
|
||||
G(b) = \{x \in A \mid f(x) = b\}.
|
||||
\end{equation}
|
||||
Show that if $f$ maps $A$ \textit{onto} $B$, then $G$ is one-to-one.
|
||||
Does the converse hold?
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
Let $f \colon A \rightarrow B$ such that $f$ maps $A$ onto $B$.
|
||||
Define $G \colon B \rightarrow \powerset{A}$ by
|
||||
\eqref{sub:exercise-3.29-eq1}.
|
||||
Let $y \in \ran{G}$.
|
||||
By definition of the \nameref{ref:range} of a set, there exists an
|
||||
$x_1 \in B$ such that $G(x_1) = y$.
|
||||
To prove $G$ is one-to-one, suppose there exists an $x_2 \in B$ such
|
||||
that $G(x_2) = y$.
|
||||
All that remains is proving $x_1 = x_2$.
|
||||
|
||||
By \eqref{sub:exercise-3.29-eq1}, it follows
|
||||
\begin{align*}
|
||||
G(x_1) & = \{x \in A \mid f(x) = x_1\} \\
|
||||
G(x_2) & = \{x \in A \mid f(x) = x_2\}.
|
||||
\end{align*}
|
||||
Since $f$ maps $A$ onto $B$, $\ran{f} = B$.
|
||||
Thus $x_2, x_2 \in \ran{f}$.
|
||||
By definition of the \nameref{ref:range} of a set, there exist some $t \in A$
|
||||
such that $f(t) = x_1$.
|
||||
Therefore $t \in G(x_1)$.
|
||||
By the \nameref{ref:extensionality-axiom}, $t \in G(x_2)$.
|
||||
Then $f(t) = x_2$.
|
||||
But $f$ is a \nameref{ref:function}, i.e. single-valued.
|
||||
Thus $x_1 = x_2$.
|
||||
|
||||
\suitdivider
|
||||
If $G$ is one-to-one, it does not follow that $f$ maps $A$ onto $B$.
|
||||
As a counterexample, let $f \colon \{1\} \rightarrow \{1, 2\}$ given by
|
||||
$f(x) = x$.
|
||||
Define $G \colon \{1, 2\} \rightarrow \powerset{\{1\}}$ by
|
||||
$$G(b) = \{x \in \{1\} \mid f(x) = b\}.$$
|
||||
$G$ is trivially one-to-one since $G(1) = \{1\}$ and $G(2) = \emptyset$.
|
||||
But $f$ does not map onto $\{1, 2\}$; there is no element in its domain that
|
||||
corresponds to value $2$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -285,7 +285,6 @@ theorem one_to_one_self_iff_one_to_one_inv {R : Relation α}
|
|||
· intro ⟨hx, hy⟩
|
||||
exact ⟨hy, hx⟩
|
||||
|
||||
|
||||
/-! ## Composition -/
|
||||
|
||||
/--
|
||||
|
|
Loading…
Reference in New Issue