Require simp to make progress.
parent
b9b54fce14
commit
7e1eb8fdfb
|
@ -86,7 +86,6 @@ theorem theorem_3h_dom {F : Set.HRelation β γ} {G : Set.HRelation α β}
|
|||
simp only [Set.mem_setOf_eq]
|
||||
have ⟨z, hz⟩ := dom_exists ht
|
||||
refine ⟨dom_comp_imp_dom_self ht, ?_⟩
|
||||
simp only [Set.mem_setOf_eq] at hz
|
||||
have ⟨a, ha⟩ := hz
|
||||
unfold dom
|
||||
simp only [Set.mem_image, Prod.exists, exists_and_right, exists_eq_right]
|
||||
|
@ -675,7 +674,6 @@ theorem exercise_3_5b {A : Set α} (B : Set β)
|
|||
apply And.intro
|
||||
· show ∀ t, t ∈ Set.prod A B → t ∈ ⋃₀ {Set.prod {x} B | x ∈ A}
|
||||
intro t h
|
||||
simp only [Set.mem_setOf_eq] at h
|
||||
unfold Set.sUnion sSup Set.instSupSetSet
|
||||
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
|
||||
unfold Set.prod at h
|
||||
|
|
Loading…
Reference in New Issue