Finish Apostol 1.17.
parent
6e54175d3a
commit
7d68ab1624
|
@ -9,6 +9,9 @@
|
|||
\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}}
|
||||
\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}}
|
||||
|
||||
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
|
||||
\newcommand{\aliasref}[2]{\hyperref[#1]{#2}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\header
|
||||
|
@ -51,6 +54,35 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}.
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Integral of a Bounded Function}}%
|
||||
\label{sec:def-integral-bounded-function}
|
||||
|
||||
Let $f$ be a function defined and bounded on $[a, b]$.
|
||||
Let $s$ and $t$ denote arbitrary step functions defined on $[a, b]$ such that
|
||||
\begin{equation}
|
||||
\label{sec:def-integral-bounded-function-eq1}
|
||||
s(x) \leq f(x) \leq t(x)
|
||||
\end{equation}
|
||||
for every $x$ in $[a, b]$.
|
||||
If there is one and only one number $I$ such that
|
||||
$$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$
|
||||
for every pair of step functions $s$ and $t$ satisfying
|
||||
\eqref{sec:def-integral-bounded-function-eq1}, then this number $I$ is called
|
||||
the \textbf{integral of $f$ from $a$ to $b$}, and is denoted by the symbol
|
||||
$\int_a^b f(x) \mathop{dx}$ or by $\int_a^b f$.
|
||||
When such an $I$ exists, the function $f$ is said to be
|
||||
\textbf{integrable on $[a, b]$}.
|
||||
|
||||
If $a < b$, we define $\int_b^a f(x) \mathop{dx} = -\int_a^b f(x) \mathop{dx}$,
|
||||
provided $f$ is integrable on $[a, b]$.
|
||||
We also define $\int_a^a f(x) \mathop{dx} = 0$.
|
||||
If $f$ is integrable on $[a, b]$, we say that the integral
|
||||
$\int_a^b f(x) \mathop{dx}$ \textbf{exists}.
|
||||
|
||||
The function $f$ is called the \textbf{integrand}, the numbers $a$ and $b$ are
|
||||
called the \textbf{limits of integration}, and the interval $[a, b]$ the
|
||||
\textbf{interval of integration}.
|
||||
|
||||
\section{\partial{Integral of a Step Function}}%
|
||||
\label{sec:def-integral-step-function}
|
||||
|
||||
|
@ -64,10 +96,18 @@ Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval
|
|||
The \textbf{integral of $s$ from $a$ to $b$}, denoted by the symbol
|
||||
$\int_a^b s(x)\mathop{dx}$, is defined by the following formula:
|
||||
$$\int_a^b s(x) \mathop{dx} = \sum_{k=1}^n s_k \cdot (x_k - x_{k-1}).$$
|
||||
If $a < b$, then we define
|
||||
$$\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}.$$
|
||||
If $a = b$, then we define
|
||||
$$\int_a^b s(x) \mathop{dx} = 0.$$
|
||||
If $a < b$, we define $\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}$.
|
||||
We also define $\int_a^a s(x) \mathop{dx} = 0$.
|
||||
|
||||
\section{\partial{Lower Integral of \texorpdfstring{$f$}{f}}}%
|
||||
\label{sec:def-lower-integral-f}
|
||||
|
||||
Let $f$ be a function bounded on $[a, b]$ and $S$ denote the set of numbers
|
||||
$\int_a^b s(x) \mathop{dx}$ obtained as $s$ runs through all
|
||||
\nameref{sec:def-step-function}s below $f$.
|
||||
That is, let $$S = \left\{ \int_a^b s(x) \mathop{dx} : s \leq f \right\}.$$
|
||||
The number $\sup{S}$ is called the \textbf{lower integral of $f$}.
|
||||
It is denoted as $\ubar{I}(f)$.
|
||||
|
||||
\section{\defined{Partition}}%
|
||||
\label{sec:def-partition}
|
||||
|
@ -140,6 +180,16 @@ Such a number $B$ is also known as the \textbf{least upper bound}.
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Upper Integral of \texorpdfstring{$f$}{f}}}%
|
||||
\label{sec:def-upper-integral-f}
|
||||
|
||||
Let $f$ be a function bounded on $[a, b]$ and $T$ denote the set of numbers
|
||||
$\int_a^b t(x) \mathop{dx}$ obtained as $t$ runs through all
|
||||
\nameref{sec:def-step-function}s above $f$.
|
||||
That is, let $$T = \left\{ \int_a^b t(x) \mathop{dx} : f \leq t \right\}.$$
|
||||
The number $\inf{T}$ is called the \textbf{upper integral of $f$}.
|
||||
It is denoted as $\bar{I}(f)$.
|
||||
|
||||
\chapter{A Set of Axioms for the Real-Number System}%
|
||||
\label{chap:set-axioms-real-number-system}
|
||||
|
||||
|
@ -2453,4 +2503,68 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\chapter{Upper and Lower Integrals}%
|
||||
\label{chap:upper-lower-integrals}
|
||||
|
||||
\section{\unverified{Theorem 1.9}}%
|
||||
\label{sec:theorem-1.9}
|
||||
|
||||
Every function $f$ which is bounded on $[a, b]$ has a lower integral
|
||||
$\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the
|
||||
inequalities
|
||||
\begin{equation}
|
||||
\label{sec:theorem-1.9-eq1}
|
||||
\int_a^b s(x) \mathop{dx} \leq \ubar{I}(f) \leq
|
||||
\bar{I}(f) \leq \int_a^b t(x) \mathop{dx}
|
||||
\end{equation}
|
||||
for all \nameref{sec:def-step-function}s $s$ and $t$ with $s \leq f \leq t$.
|
||||
The function $f$ is integrable on $[a, b]$ if and only if its upper and lower
|
||||
integrals are equal, in which case we have
|
||||
$$\int_a^b f(x) \mathop{dx} = \ubar{I}(f) = \bar{I}(f).$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $f$ be a function bounded on $[a, b]$.
|
||||
We prove that (i) $f$ has a lower and upper integral satisfying
|
||||
\eqref{sec:theorem-1.9-eq1} and (ii) that $f$ is integrable on $[a, b]$ if
|
||||
and only if its lower and upper integrals are equal.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
Because $f$ is bounded, there exists some $M > 0$ such that
|
||||
$\abs{f(x)} \leq M$ for all $x \in [a, b]$.
|
||||
|
||||
Let $S$ denote the set of numbers $\int_a^b s(x) \mathop{dx}$ obtained as
|
||||
$s$ runs through all step functions below $f$.
|
||||
That is, let $$S = \left\{ \int_a^b s(x) \mathop{dx} : s \leq f \right\}.$$
|
||||
Note $S$ is nonempty since, e.g. constant function $c(x) = -M$ is a member.
|
||||
|
||||
Likewise, let $T$ denote the set of numbers $\int_a^b t(x) \mathop{dx}$
|
||||
obtained as $t$ runs through all step functions above $f$.
|
||||
That is, let $$T = \left\{ \int_a^b t(x) \mathop{dx} : f \leq t \right\}.$$
|
||||
Note $T$ is nonempty since e.g. constant function $c(x) = M$ is a member.
|
||||
|
||||
By construction, $s \leq t$ for every $s$ in $S$ and $t$ in $T$.
|
||||
Therefore \nameref{sec:theorem-i.34} tells us $S$ has a
|
||||
\nameref{sec:def-supremum}, $T$ has an \nameref{sec:def-infimum}, and
|
||||
$\sup{S} \leq \inf{T}$.
|
||||
By definition of the \nameref{sec:def-lower-integral-f},
|
||||
$\ubar{I}(f) = \sup{S}$.
|
||||
By definition of the \nameref{sec:def-upper-integral-f},
|
||||
$\bar{I}(f) = \inf{S}$.
|
||||
Thus \eqref{sec:theorem-1.9-eq1} holds.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By definition of integrability, $f$ is integrable on $[a, b]$ if and only if
|
||||
there exists one and only one number $I$ such that
|
||||
$$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$
|
||||
for every pair of step functions $s$ and $t$ satisfying
|
||||
\eqref{sec:def-integral-bounded-function-eq1}.
|
||||
By \eqref{sec:theorem-1.9-eq1} and the definition of the supremum/infimum,
|
||||
this holds if and only if $\ubar{I}(f) = \bar{I}(f)$, concluding the
|
||||
proof.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in New Issue