Finish Apostol 1.17.

finite-set-exercises
Joshua Potter 2023-05-16 15:28:49 -06:00
parent 6e54175d3a
commit 7d68ab1624
1 changed files with 118 additions and 4 deletions

View File

@ -9,6 +9,9 @@
\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}}
\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
\newcommand{\aliasref}[2]{\hyperref[#1]{#2}}
\begin{document}
\header
@ -51,6 +54,35 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}.
\end{definition}
\section{\partial{Integral of a Bounded Function}}%
\label{sec:def-integral-bounded-function}
Let $f$ be a function defined and bounded on $[a, b]$.
Let $s$ and $t$ denote arbitrary step functions defined on $[a, b]$ such that
\begin{equation}
\label{sec:def-integral-bounded-function-eq1}
s(x) \leq f(x) \leq t(x)
\end{equation}
for every $x$ in $[a, b]$.
If there is one and only one number $I$ such that
$$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$
for every pair of step functions $s$ and $t$ satisfying
\eqref{sec:def-integral-bounded-function-eq1}, then this number $I$ is called
the \textbf{integral of $f$ from $a$ to $b$}, and is denoted by the symbol
$\int_a^b f(x) \mathop{dx}$ or by $\int_a^b f$.
When such an $I$ exists, the function $f$ is said to be
\textbf{integrable on $[a, b]$}.
If $a < b$, we define $\int_b^a f(x) \mathop{dx} = -\int_a^b f(x) \mathop{dx}$,
provided $f$ is integrable on $[a, b]$.
We also define $\int_a^a f(x) \mathop{dx} = 0$.
If $f$ is integrable on $[a, b]$, we say that the integral
$\int_a^b f(x) \mathop{dx}$ \textbf{exists}.
The function $f$ is called the \textbf{integrand}, the numbers $a$ and $b$ are
called the \textbf{limits of integration}, and the interval $[a, b]$ the
\textbf{interval of integration}.
\section{\partial{Integral of a Step Function}}%
\label{sec:def-integral-step-function}
@ -64,10 +96,18 @@ Denote by $s_k$ the constant value that $s$ takes in the $k$th open subinterval
The \textbf{integral of $s$ from $a$ to $b$}, denoted by the symbol
$\int_a^b s(x)\mathop{dx}$, is defined by the following formula:
$$\int_a^b s(x) \mathop{dx} = \sum_{k=1}^n s_k \cdot (x_k - x_{k-1}).$$
If $a < b$, then we define
$$\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}.$$
If $a = b$, then we define
$$\int_a^b s(x) \mathop{dx} = 0.$$
If $a < b$, we define $\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}$.
We also define $\int_a^a s(x) \mathop{dx} = 0$.
\section{\partial{Lower Integral of \texorpdfstring{$f$}{f}}}%
\label{sec:def-lower-integral-f}
Let $f$ be a function bounded on $[a, b]$ and $S$ denote the set of numbers
$\int_a^b s(x) \mathop{dx}$ obtained as $s$ runs through all
\nameref{sec:def-step-function}s below $f$.
That is, let $$S = \left\{ \int_a^b s(x) \mathop{dx} : s \leq f \right\}.$$
The number $\sup{S}$ is called the \textbf{lower integral of $f$}.
It is denoted as $\ubar{I}(f)$.
\section{\defined{Partition}}%
\label{sec:def-partition}
@ -140,6 +180,16 @@ Such a number $B$ is also known as the \textbf{least upper bound}.
\end{definition}
\section{\partial{Upper Integral of \texorpdfstring{$f$}{f}}}%
\label{sec:def-upper-integral-f}
Let $f$ be a function bounded on $[a, b]$ and $T$ denote the set of numbers
$\int_a^b t(x) \mathop{dx}$ obtained as $t$ runs through all
\nameref{sec:def-step-function}s above $f$.
That is, let $$T = \left\{ \int_a^b t(x) \mathop{dx} : f \leq t \right\}.$$
The number $\inf{T}$ is called the \textbf{upper integral of $f$}.
It is denoted as $\bar{I}(f)$.
\chapter{A Set of Axioms for the Real-Number System}%
\label{chap:set-axioms-real-number-system}
@ -2453,4 +2503,68 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
\end{proof}
\chapter{Upper and Lower Integrals}%
\label{chap:upper-lower-integrals}
\section{\unverified{Theorem 1.9}}%
\label{sec:theorem-1.9}
Every function $f$ which is bounded on $[a, b]$ has a lower integral
$\ubar{I}(f)$ and an upper integral $\overline{I}(f)$ satisfying the
inequalities
\begin{equation}
\label{sec:theorem-1.9-eq1}
\int_a^b s(x) \mathop{dx} \leq \ubar{I}(f) \leq
\bar{I}(f) \leq \int_a^b t(x) \mathop{dx}
\end{equation}
for all \nameref{sec:def-step-function}s $s$ and $t$ with $s \leq f \leq t$.
The function $f$ is integrable on $[a, b]$ if and only if its upper and lower
integrals are equal, in which case we have
$$\int_a^b f(x) \mathop{dx} = \ubar{I}(f) = \bar{I}(f).$$
\begin{proof}
Let $f$ be a function bounded on $[a, b]$.
We prove that (i) $f$ has a lower and upper integral satisfying
\eqref{sec:theorem-1.9-eq1} and (ii) that $f$ is integrable on $[a, b]$ if
and only if its lower and upper integrals are equal.
\paragraph{(i)}%
Because $f$ is bounded, there exists some $M > 0$ such that
$\abs{f(x)} \leq M$ for all $x \in [a, b]$.
Let $S$ denote the set of numbers $\int_a^b s(x) \mathop{dx}$ obtained as
$s$ runs through all step functions below $f$.
That is, let $$S = \left\{ \int_a^b s(x) \mathop{dx} : s \leq f \right\}.$$
Note $S$ is nonempty since, e.g. constant function $c(x) = -M$ is a member.
Likewise, let $T$ denote the set of numbers $\int_a^b t(x) \mathop{dx}$
obtained as $t$ runs through all step functions above $f$.
That is, let $$T = \left\{ \int_a^b t(x) \mathop{dx} : f \leq t \right\}.$$
Note $T$ is nonempty since e.g. constant function $c(x) = M$ is a member.
By construction, $s \leq t$ for every $s$ in $S$ and $t$ in $T$.
Therefore \nameref{sec:theorem-i.34} tells us $S$ has a
\nameref{sec:def-supremum}, $T$ has an \nameref{sec:def-infimum}, and
$\sup{S} \leq \inf{T}$.
By definition of the \nameref{sec:def-lower-integral-f},
$\ubar{I}(f) = \sup{S}$.
By definition of the \nameref{sec:def-upper-integral-f},
$\bar{I}(f) = \inf{S}$.
Thus \eqref{sec:theorem-1.9-eq1} holds.
\paragraph{(ii)}%
By definition of integrability, $f$ is integrable on $[a, b]$ if and only if
there exists one and only one number $I$ such that
$$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$
for every pair of step functions $s$ and $t$ satisfying
\eqref{sec:def-integral-bounded-function-eq1}.
By \eqref{sec:theorem-1.9-eq1} and the definition of the supremum/infimum,
this holds if and only if $\ubar{I}(f) = \bar{I}(f)$, concluding the
proof.
\end{proof}
\end{document}