List books being worked through.
parent
87e293ea8d
commit
7847cf1afe
25
README.md
25
README.md
|
@ -1,14 +1,15 @@
|
|||
# bookshelf-lean
|
||||
# bookshelf
|
||||
|
||||
A collection of proofs and answers to exercises to books I'm studying.
|
||||
A collection on the study of the books listed below. I aim to use [Lean](https://leanprover.github.io/)
|
||||
when possible (with respect to my current level of ability) and fallback to
|
||||
LaTeX when not.
|
||||
|
||||
## Updates
|
||||
|
||||
Lean's tooling is a fickle beast. If looking to update e.g. `Mathlib`, pin a new
|
||||
version to the `lake-manifest.json` file and start a new build from scratch:
|
||||
|
||||
```bash
|
||||
> lake update
|
||||
> lake clean
|
||||
> lake build
|
||||
```
|
||||
- [ ] Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
||||
- [ ] Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||
- [ ] Axler, Sheldon. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2015.
|
||||
- [ ] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. Cambridge, Mass: MIT Press, 2009.
|
||||
- [ ] Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego: Harcourt/Academic Press, 2001.
|
||||
- [ ] Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
- [ ] Gustedt, Jens. Modern C. Shelter Island, NY: Manning Publications Co, 2020.
|
||||
- [ ] Ross, Sheldon. A First Course in Probability Theory. 8th ed. Pearson Prentice Hall, n.d.
|
||||
- [ ] Smullyan, Raymond M. To Mock a Mockingbird: And Other Logic Puzzles Including an Amazing Adventure in Combinatory Logic. Oxford: Oxford university press, 2000.
|
||||
|
|
|
@ -1,4 +0,0 @@
|
|||
import Bookshelf.Sequence.Arithmetic
|
||||
import Bookshelf.Sequence.Geometric
|
||||
import Bookshelf.Tuple
|
||||
import Bookshelf.Vector
|
|
@ -1,53 +0,0 @@
|
|||
import Mathlib.Tactic.Ring
|
||||
|
||||
/--
|
||||
A list-like structure with its size encoded in the type.
|
||||
|
||||
For a `Vector`-like type with opposite "endian", refer to `Tuple`.
|
||||
-/
|
||||
inductive Vector (α : Type u) : (size : Nat) → Type u where
|
||||
| nil : Vector α 0
|
||||
| cons : α → Vector α n → Vector α (n + 1)
|
||||
|
||||
syntax (priority := high) "v[" term,* "]" : term
|
||||
|
||||
macro_rules
|
||||
| `(v[]) => `(Vector.nil)
|
||||
| `(v[$x]) => `(Vector.cons $x v[])
|
||||
| `(v[$x, $xs:term,*]) => `(Vector.cons $x v[$xs,*])
|
||||
|
||||
namespace Vector
|
||||
|
||||
/--
|
||||
Returns the number of entries in the `Vector`.
|
||||
-/
|
||||
def size (_ : Vector α n) : Nat := n
|
||||
|
||||
/--
|
||||
Returns the first entry of the `Vector`.
|
||||
-/
|
||||
def head : Vector α (n + 1) → α
|
||||
| cons v _ => v
|
||||
|
||||
/--
|
||||
Returns the last entry of the `Vector`.
|
||||
-/
|
||||
def last : Vector α (n + 1) → α
|
||||
| cons v vs => if _ : n = 0 then v else
|
||||
match n with
|
||||
| _ + 1 => vs.last
|
||||
|
||||
/--
|
||||
Returns all but the `head` of the `Vector`.
|
||||
-/
|
||||
def tail : Vector α (n + 1) → Vector α n
|
||||
| cons _ vs => vs
|
||||
|
||||
/--
|
||||
Appends an entry to the end of the `Vector`.
|
||||
-/
|
||||
def snoc : Vector α n → α → Vector α (n + 1)
|
||||
| nil, a => v[a]
|
||||
| cons v vs, a => cons v (snoc vs a)
|
||||
|
||||
end Vector
|
|
@ -0,0 +1,3 @@
|
|||
import Common.Sequence.Arithmetic
|
||||
import Common.Sequence.Geometric
|
||||
import Common.Tuple
|
|
@ -1,10 +1,3 @@
|
|||
/-
|
||||
# References
|
||||
|
||||
1. Levin, Oscar. Discrete Mathematics: An Open Introduction. 3rd ed., n.d.
|
||||
https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
|
||||
-/
|
||||
|
||||
import Mathlib.Tactic.NormNum
|
||||
import Mathlib.Tactic.Ring
|
||||
|
|
@ -1,10 +1,3 @@
|
|||
/-
|
||||
# References
|
||||
|
||||
1. Levin, Oscar. Discrete Mathematics: An Open Introduction. 3rd ed., n.d.
|
||||
https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
|
||||
-/
|
||||
|
||||
import Mathlib.Tactic.NormNum
|
||||
import Mathlib.Tactic.Ring
|
||||
|
|
@ -1,10 +1,3 @@
|
|||
/-
|
||||
# References
|
||||
|
||||
1. Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San Diego:
|
||||
Harcourt/Academic Press, 2001.
|
||||
-/
|
||||
|
||||
import Mathlib.Tactic.Ring
|
||||
|
||||
/--
|
||||
|
@ -29,9 +22,9 @@ macro_rules
|
|||
|
||||
namespace Tuple
|
||||
|
||||
/- -------------------------------------
|
||||
- Coercions
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Coercions
|
||||
-- ========================================
|
||||
|
||||
scoped instance : CoeOut (Tuple α (min (m + n) m)) (Tuple α m) where
|
||||
coe := cast (by simp)
|
||||
|
@ -54,9 +47,9 @@ scoped instance : Coe (Tuple α (min m n + 1)) (Tuple α (min (m + 1) (n + 1)))
|
|||
scoped instance : Coe (Tuple α m) (Tuple α (min (m + n) m)) where
|
||||
coe := cast (by simp)
|
||||
|
||||
/- -------------------------------------
|
||||
- Equality
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Equality
|
||||
-- ========================================
|
||||
|
||||
theorem eq_nil : @Tuple.nil α = t[] := rfl
|
||||
|
||||
|
@ -90,9 +83,9 @@ protected def hasDecEq [DecidableEq α] (t₁ t₂ : Tuple α n) : Decidable (Eq
|
|||
|
||||
instance [DecidableEq α] : DecidableEq (Tuple α n) := Tuple.hasDecEq
|
||||
|
||||
/- -------------------------------------
|
||||
- Basic API
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Basic API
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Returns the number of entries of the `Tuple`.
|
||||
|
@ -118,9 +111,9 @@ def cons : Tuple α n → α → Tuple α (n + 1)
|
|||
| t[], a => t[a]
|
||||
| snoc ts t, a => snoc (cons ts a) t
|
||||
|
||||
/- -------------------------------------
|
||||
- Concatenation
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Concatenation
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Join two `Tuple`s together end to end.
|
||||
|
@ -179,9 +172,9 @@ theorem snoc_eq_init_concat_last (as : Tuple α m) : snoc as a = concat as t[a]
|
|||
rfl
|
||||
(fun _ _ => by simp; unfold concat concat; rfl)
|
||||
|
||||
/- -------------------------------------
|
||||
- Initial sequences
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Initial sequences
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Take the first `k` entries from the `Tuple` to form a new `Tuple`, or the entire
|
|
@ -1,13 +1,11 @@
|
|||
import Lake
|
||||
open Lake DSL
|
||||
|
||||
package «Bookshelf»
|
||||
package «Common»
|
||||
|
||||
require mathlib from git
|
||||
"https://github.com/leanprover-community/mathlib4.git" @
|
||||
"0107c50abf149a48b5b9ad08a0b2a2093bcb567a"
|
||||
|
||||
@[default_target]
|
||||
lean_lib «Bookshelf» {
|
||||
-- add library configuration options here
|
||||
}
|
||||
lean_lib «Common»
|
|
@ -1,8 +1,7 @@
|
|||
{"version": 4,
|
||||
"packagesDir": "lake-packages",
|
||||
"packages":
|
||||
[{"path": {"name": "Bookshelf", "dir": "./../bookshelf"}},
|
||||
{"git":
|
||||
[{"git":
|
||||
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
||||
"subDir?": null,
|
||||
"rev": "0107c50abf149a48b5b9ad08a0b2a2093bcb567a",
|
||||
|
@ -25,4 +24,5 @@
|
|||
"subDir?": null,
|
||||
"rev": "5507f9d8409f93b984ce04eccf4914d534e6fca2",
|
||||
"name": "std",
|
||||
"inputRev?": "main"}}]}
|
||||
"inputRev?": "main"}},
|
||||
{"path": {"name": "Common", "dir": "./../common"}}]}
|
||||
|
|
|
@ -3,7 +3,7 @@ open Lake DSL
|
|||
|
||||
package «first-course-abstract-algebra»
|
||||
|
||||
require Bookshelf from "../bookshelf"
|
||||
require Common from "../common"
|
||||
require mathlib from git
|
||||
"https://github.com/leanprover-community/mathlib4.git" @
|
||||
"0107c50abf149a48b5b9ad08a0b2a2093bcb567a"
|
||||
|
|
|
@ -4,15 +4,15 @@ Chapter 0
|
|||
Useful Facts About Sets
|
||||
-/
|
||||
|
||||
import Bookshelf.Tuple
|
||||
import Common.Tuple
|
||||
|
||||
/--
|
||||
The following describes a so-called "generic" tuple. Like in `Bookshelf.Tuple`,
|
||||
an `n`-tuple is defined recursively like so:
|
||||
The following describes a so-called "generic" tuple. Like in `Common.Tuple`, an
|
||||
`n`-tuple is defined recursively like so:
|
||||
|
||||
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
||||
|
||||
Unlike `Bookshelf.Tuple`, a "generic" tuple bends the syntax above further. For
|
||||
Unlike `Common.Tuple`, a "generic" tuple bends the syntax above further. For
|
||||
example, both tuples above are equivalent to:
|
||||
|
||||
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
|
||||
|
@ -20,7 +20,7 @@ example, both tuples above are equivalent to:
|
|||
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to
|
||||
prove certain theorems found in [1] (e.g. `lemma_0a`).
|
||||
|
||||
In general, prefer `Bookshelf.Tuple`.
|
||||
In general, prefer `Common.Tuple`.
|
||||
-/
|
||||
inductive XTuple : (α : Type u) → (size : Nat × Nat) → Type u where
|
||||
| nil : XTuple α (0, 0)
|
||||
|
@ -38,9 +38,9 @@ namespace XTuple
|
|||
|
||||
open scoped Tuple
|
||||
|
||||
/- -------------------------------------
|
||||
- Normalization
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Normalization
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Converts an `XTuple` into "normal form".
|
||||
|
@ -97,9 +97,9 @@ theorem norm_snoc_eq_concat {t₁ : XTuple α (p, q)} {t₂ : Tuple α n}
|
|||
: norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by
|
||||
conv => lhs; unfold norm
|
||||
|
||||
/- -------------------------------------
|
||||
- Equality
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Equality
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Implements Boolean equality for `XTuple α n` provided `α` has decidable
|
||||
|
@ -108,9 +108,9 @@ equality.
|
|||
instance BEq [DecidableEq α] : BEq (XTuple α n) where
|
||||
beq t₁ t₂ := t₁.norm == t₂.norm
|
||||
|
||||
/- -------------------------------------
|
||||
- Basic API
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Basic API
|
||||
-- ========================================
|
||||
|
||||
/--
|
||||
Returns the number of entries in the `XTuple`.
|
||||
|
@ -163,9 +163,9 @@ def snd : XTuple α (m, n) → Tuple α n
|
|||
| x[] => t[]
|
||||
| snoc _ ts => ts
|
||||
|
||||
/- -------------------------------------
|
||||
- Lemma 0A
|
||||
- -------------------------------------/
|
||||
-- ========================================
|
||||
-- Lemma 0A
|
||||
-- ========================================
|
||||
|
||||
section
|
||||
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
{"version": 4,
|
||||
"packagesDir": "lake-packages",
|
||||
"packages":
|
||||
[{"path": {"name": "Bookshelf", "dir": "./../bookshelf"}},
|
||||
{"git":
|
||||
[{"git":
|
||||
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
||||
"subDir?": null,
|
||||
"rev": "0107c50abf149a48b5b9ad08a0b2a2093bcb567a",
|
||||
|
@ -25,4 +24,5 @@
|
|||
"subDir?": null,
|
||||
"rev": "5507f9d8409f93b984ce04eccf4914d534e6fca2",
|
||||
"name": "std",
|
||||
"inputRev?": "main"}}]}
|
||||
"inputRev?": "main"}},
|
||||
{"path": {"name": "Common", "dir": "./../common"}}]}
|
||||
|
|
|
@ -3,9 +3,7 @@ open Lake DSL
|
|||
|
||||
package «mathematical-introduction-logic»
|
||||
|
||||
require Bookshelf from "../bookshelf"
|
||||
require Common from "../common"
|
||||
|
||||
@[default_target]
|
||||
lean_lib «enderton» {
|
||||
-- add library configuration options here
|
||||
}
|
||||
lean_lib «enderton»
|
||||
|
|
|
@ -4,9 +4,11 @@ Chapter 2
|
|||
Dependent Type Theory
|
||||
-/
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Define the function `Do_Twice`, as described in Section 2.4.
|
||||
-- ========================================
|
||||
namespace ex1
|
||||
|
||||
def double (x : Nat) := x + x
|
||||
|
@ -17,9 +19,11 @@ def doTwiceTwice (f : (Nat → Nat) → (Nat → Nat)) (x : Nat → Nat) := f (f
|
|||
|
||||
end ex1
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
--
|
||||
-- Define the functions `curry` and `uncurry`, as described in Section 2.4.
|
||||
-- ========================================
|
||||
namespace ex2
|
||||
|
||||
def curry (f : α × β → γ) : (α → β → γ) :=
|
||||
|
@ -30,6 +34,7 @@ def uncurry (f : α → β → γ) : (α × β → γ) :=
|
|||
|
||||
end ex2
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 3
|
||||
--
|
||||
-- Above, we used the example `vec α n` for vectors of elements of type `α` of
|
||||
|
@ -39,6 +44,8 @@ end ex2
|
|||
-- implicit arguments for parameters that can be inferred. Declare some
|
||||
-- variables and check some expressions involving the constants that you have
|
||||
-- declared.
|
||||
-- ========================================
|
||||
|
||||
namespace ex3
|
||||
|
||||
universe u
|
||||
|
@ -64,6 +71,7 @@ variable (c d : vec Prop 2)
|
|||
|
||||
end ex3
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 4
|
||||
--
|
||||
-- Similarly, declare a constant `matrix` so that `matrix α m n` could represent
|
||||
|
@ -72,6 +80,8 @@ end ex3
|
|||
-- (using vec) multiplication of a matrix by a vector. Once again, declare some
|
||||
-- variables and check some expressions involving the constants that you have
|
||||
-- declared.
|
||||
-- ========================================
|
||||
|
||||
namespace ex4
|
||||
|
||||
universe u
|
||||
|
|
|
@ -4,10 +4,13 @@ Chapter 3
|
|||
Propositions and Proofs
|
||||
-/
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Prove the following identities, replacing the "sorry" placeholders with
|
||||
-- actual proofs.
|
||||
-- ========================================
|
||||
|
||||
namespace ex1
|
||||
|
||||
open or
|
||||
|
@ -102,10 +105,13 @@ example : (p → q) → (¬q → ¬p) :=
|
|||
|
||||
end ex1
|
||||
|
||||
-- Example 2
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
--
|
||||
-- Prove the following identities, replacing the “sorry” placeholders with
|
||||
-- actual proofs. These require classical reasoning.
|
||||
-- ========================================
|
||||
|
||||
namespace ex2
|
||||
|
||||
open Classical
|
||||
|
@ -147,9 +153,12 @@ example : (((p → q) → p) → p) :=
|
|||
|
||||
end ex2
|
||||
|
||||
-- Example 3
|
||||
-- ========================================
|
||||
-- Exercise 3
|
||||
--
|
||||
-- Prove `¬(p ↔ ¬p)` without using classical logic.
|
||||
-- ========================================
|
||||
|
||||
namespace ex3
|
||||
|
||||
variable (p : Prop)
|
||||
|
|
|
@ -4,10 +4,13 @@ Chapter 4
|
|||
Quantifiers and Equality
|
||||
-/
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Prove these equivalences. You should also try to understand why the reverse
|
||||
-- implication is not derivable in the last example.
|
||||
-- ========================================
|
||||
|
||||
namespace ex1
|
||||
|
||||
variable (α : Type _)
|
||||
|
@ -34,11 +37,14 @@ example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x :=
|
|||
|
||||
end ex1
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
--
|
||||
-- It is often possible to bring a component of a formula outside a universal
|
||||
-- quantifier, when it does not depend on the quantified variable. Try proving
|
||||
-- these (one direction of the second of these requires classical logic).
|
||||
-- ========================================
|
||||
|
||||
namespace ex2
|
||||
|
||||
variable (α : Type _)
|
||||
|
@ -70,11 +76,14 @@ example : (∀ x, r → p x) ↔ (r → ∀ x, p x) :=
|
|||
|
||||
end ex2
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 3
|
||||
--
|
||||
-- Consider the "barber paradox," that is, the claim that in a certain town
|
||||
-- there is a (male) barber that shaves all and only the men who do not shave
|
||||
-- themselves. Prove that this is a contradiction.
|
||||
-- ========================================
|
||||
|
||||
namespace ex3
|
||||
|
||||
open Classical
|
||||
|
@ -91,6 +100,7 @@ example (h : ∀ x : men, shaves barber x ↔ ¬shaves x x) : False :=
|
|||
|
||||
end ex3
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 4
|
||||
--
|
||||
-- Remember that, without any parameters, an expression of type `Prop` is just
|
||||
|
@ -101,6 +111,8 @@ end ex3
|
|||
-- states that every odd number greater than `5` is the sum of three primes.
|
||||
-- Look up the definition of a Fermat prime or any of the other statements, if
|
||||
-- necessary.
|
||||
-- ========================================
|
||||
|
||||
namespace ex4
|
||||
|
||||
def even (a : Nat) := ∃ b, a = 2 * b
|
||||
|
@ -132,9 +144,12 @@ def Fermat'sLastTheorem : Prop :=
|
|||
|
||||
end ex4
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 5
|
||||
--
|
||||
-- Prove as many of the identities listed in Section 4.4 as you can.
|
||||
-- ========================================
|
||||
|
||||
namespace ex5
|
||||
|
||||
open Classical
|
||||
|
@ -215,9 +230,12 @@ example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) :=
|
|||
|
||||
end ex5
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 6
|
||||
--
|
||||
-- Give a calculational proof of the theorem `log_mul` below.
|
||||
-- ========================================
|
||||
|
||||
namespace ex6
|
||||
|
||||
variable (log exp : Float → Float)
|
||||
|
|
|
@ -4,13 +4,18 @@ Chapter 5
|
|||
Tactics
|
||||
-/
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you
|
||||
-- can now with tactic proofs, using also `rw` and `simp` as appropriate.
|
||||
-- ========================================
|
||||
|
||||
namespace ex1
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 3.1
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex3_1
|
||||
|
||||
|
@ -151,7 +156,9 @@ example : (p → q) → (¬q → ¬p) := by
|
|||
|
||||
end ex3_1
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 3.2
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex3_2
|
||||
|
||||
|
@ -220,7 +227,9 @@ example : (((p → q) → p) → p) := by
|
|||
|
||||
end ex3_2
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 3.3
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex3_3
|
||||
|
||||
|
@ -232,7 +241,9 @@ example (hp : p) : ¬(p ↔ ¬p) := by
|
|||
|
||||
end ex3_3
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 4.1
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex4_1
|
||||
|
||||
|
@ -261,7 +272,9 @@ example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := by
|
|||
|
||||
end ex4_1
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 4.2
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex4_2
|
||||
|
||||
|
@ -313,7 +326,9 @@ example : (∀ x, r → p x) ↔ (r → ∀ x, p x) := by
|
|||
|
||||
end ex4_2
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 4.3
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex4_3
|
||||
|
||||
|
@ -332,7 +347,9 @@ example (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x) : False := by
|
|||
|
||||
end ex4_3
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Exercises 4.5
|
||||
-- ----------------------------------------
|
||||
|
||||
section ex4_5
|
||||
|
||||
|
@ -443,9 +460,12 @@ end ex4_5
|
|||
|
||||
end ex1
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
--
|
||||
-- Use tactic combinators to obtain a one line proof of the following:
|
||||
-- ========================================
|
||||
|
||||
namespace ex2
|
||||
|
||||
example (p q r : Prop) (hp : p) : (p ∨ q ∨ r) ∧ (q ∨ p ∨ r) ∧ (q ∨ r ∨ p) :=
|
||||
|
|
|
@ -4,6 +4,7 @@ Chapter 7
|
|||
Inductive Types
|
||||
-/
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Try defining other operations on the natural numbers, such as multiplication,
|
||||
|
@ -15,6 +16,8 @@ Inductive Types
|
|||
-- Since many of these are already defined in Lean’s core library, you should
|
||||
-- work within a namespace named hide, or something like that, in order to avoid
|
||||
-- name clashes.
|
||||
-- ========================================
|
||||
|
||||
namespace ex1
|
||||
|
||||
-- As defined in the book.
|
||||
|
@ -74,6 +77,7 @@ end Nat
|
|||
|
||||
end ex1
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
--
|
||||
-- Define some operations on lists, like a `length` function or the `reverse`
|
||||
|
@ -82,6 +86,8 @@ end ex1
|
|||
-- a. `length (s ++ t) = length s + length t`
|
||||
-- b. `length (reverse t) = length t`
|
||||
-- c. `reverse (reverse t) = t`
|
||||
-- ========================================
|
||||
|
||||
namespace ex2
|
||||
|
||||
variable {α : Type _}
|
||||
|
@ -171,6 +177,7 @@ theorem reverse_reverse (t : List α)
|
|||
|
||||
end ex2
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 3
|
||||
--
|
||||
-- Define an inductive data type consisting of terms built up from the following
|
||||
|
@ -183,6 +190,8 @@ end ex2
|
|||
--
|
||||
-- Recursively define a function that evaluates any such term with respect to an
|
||||
-- assignment of values to the variables.
|
||||
-- ========================================
|
||||
|
||||
namespace ex3
|
||||
|
||||
inductive Foo : Type _
|
||||
|
|
|
@ -4,12 +4,15 @@ Chapter 8
|
|||
Induction and Recursion
|
||||
-/
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Open a namespace `Hidden` to avoid naming conflicts, and use the equation
|
||||
-- compiler to define addition, multiplication, and exponentiation on the
|
||||
-- natural numbers. Then use the equation compiler to derive some of their basic
|
||||
-- properties.
|
||||
-- ========================================
|
||||
|
||||
namespace ex1
|
||||
|
||||
def add : Nat → Nat → Nat
|
||||
|
@ -26,11 +29,14 @@ def exp : Nat → Nat → Nat
|
|||
|
||||
end ex1
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
--
|
||||
-- Similarly, use the equation compiler to define some basic operations on lists
|
||||
-- (like the reverse function) and prove theorems about lists by induction (such
|
||||
-- as the fact that `reverse (reverse xs) = xs` for any list `xs`).
|
||||
-- ========================================
|
||||
|
||||
namespace ex2
|
||||
|
||||
variable {α : Type _}
|
||||
|
@ -43,11 +49,14 @@ def reverse : List α → List α
|
|||
|
||||
end ex2
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 3
|
||||
--
|
||||
-- Define your own function to carry out course-of-value recursion on the
|
||||
-- natural numbers. Similarly, see if you can figure out how to define
|
||||
-- `WellFounded.fix` on your own.
|
||||
-- ========================================
|
||||
|
||||
namespace ex3
|
||||
|
||||
def below {motive : Nat → Type} : Nat → Type
|
||||
|
@ -58,11 +67,14 @@ def below {motive : Nat → Type} : Nat → Type
|
|||
|
||||
end ex3
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 4
|
||||
--
|
||||
-- Following the examples in Section Dependent Pattern Matching, define a
|
||||
-- function that will append two vectors. This is tricky; you will have to
|
||||
-- define an auxiliary function.
|
||||
-- ========================================
|
||||
|
||||
namespace ex4
|
||||
|
||||
inductive Vector (α : Type u) : Nat → Type u
|
||||
|
@ -77,11 +89,14 @@ end Vector
|
|||
|
||||
end ex4
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 5
|
||||
--
|
||||
-- Consider the following type of arithmetic expressions. The idea is that
|
||||
-- `var n` is a variable, `vₙ`, and `const n` is the constant whose value is
|
||||
-- `n`.
|
||||
-- ========================================
|
||||
|
||||
namespace ex5
|
||||
|
||||
inductive Expr where
|
||||
|
@ -113,10 +128,12 @@ def sampleVal : Nat → Nat
|
|||
-- Try it out. You should get 47 here.
|
||||
-- #eval eval sampleVal sampleExpr
|
||||
|
||||
-- ----------------------------------------
|
||||
-- Implement "constant fusion," a procedure that simplifies subterms like
|
||||
-- `5 + 7` to `12`. Using the auxiliary function `simpConst`, define a function
|
||||
-- "fuse": to simplify a plus or a times, first simplify the arguments
|
||||
-- recursively, and then apply `simpConst` to try to simplify the result.
|
||||
-- ----------------------------------------
|
||||
|
||||
def simpConst : Expr → Expr
|
||||
| plus (const n₁) (const n₂) => const (n₁ + n₂)
|
||||
|
|
Loading…
Reference in New Issue