Enderton. Finish function theorems.
parent
62f259358d
commit
76d294a47f
|
@ -9,6 +9,7 @@
|
|||
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
||||
\newcommand{\fld}[1]{\textop{fld}{#1}}
|
||||
\newcommand{\ran}[1]{\textop{ran}{#1}}
|
||||
\newcommand{\img}[2]{#1\left\llbracket#2\right\rrbracket}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -125,7 +126,7 @@ One-to-one functions are sometimes called \textbf{injections}.
|
|||
Let $A$ and $F$ be arbitrary sets.
|
||||
The \textbf{image of $A$ under $F$} is the set
|
||||
\begin{align*}
|
||||
F[A]
|
||||
\img{F}{A}
|
||||
& = \ran{(F \restriction A)} \\
|
||||
& = \{v \mid (\exists u \in A) uFv\}.
|
||||
\end{align*}
|
||||
|
@ -3413,59 +3414,233 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 3K}}%
|
||||
\label{sub:theorem-3k}
|
||||
\subsection{\partial{Theorem 3K(a)}}%
|
||||
\label{sub:theorem-3k-a}
|
||||
|
||||
\begin{theorem}[3K]
|
||||
\begin{theorem}[3K(a)]
|
||||
|
||||
The following hold for any sets. ($F$ need not be a function.)
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item The image of a union is the union of the images:
|
||||
$$F[A \cup B] = F[A] \cup F[B] \quad\text{and}\quad
|
||||
F\left[\bigcup{\mathscr{A}}\right] =
|
||||
\bigcup\;\{F[A] \mid A \in \mathscr{A}\}.$$
|
||||
\item The image of an intersection is included in the intersection of the
|
||||
images:
|
||||
$$F[A \cap B] \subseteq F[A] \cap F[B] \quad\text{and}\quad
|
||||
F\left[\bigcap\mathscr{A}\right] \subseteq
|
||||
\bigcap\;\{F[A] \mid A \in \mathscr{A}\}$$
|
||||
for nonempty $\mathscr{A}$.
|
||||
Equality holds if $F$ is single-rooted.
|
||||
\item The image of a difference includes the difference of the images:
|
||||
$$F[A] - F[B] \subseteq F[A - B].$$
|
||||
Equality holds if $F$ is single-rooted.
|
||||
\end{enumerate}
|
||||
The image of a union is the union of the images:
|
||||
\begin{equation}
|
||||
\label{sub:theorem-3k-a-eq1}
|
||||
\img{F}{A \cup B} = \img{F}{A} \cup \img{F}{B}
|
||||
\end{equation}
|
||||
and
|
||||
\begin{equation}
|
||||
\label{sub:theorem-3k-a-eq2}
|
||||
\img{F}{\bigcup{\mathscr{A}}} =
|
||||
\bigcup\;\{\img{F}{A} \mid A \in \mathscr{A}\}.
|
||||
\end{equation}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
Let $F$, $A$, $B$, and $\mathscr{A}$ be arbitrary sets.
|
||||
We prove (i) \eqref{sub:theorem-3k-a-eq1} and (ii)
|
||||
\eqref{sub:theorem-3k-a-eq2}.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By definition of the \nameref{ref:image} of a set:
|
||||
\begin{align*}
|
||||
\img{F}{A \cup B}
|
||||
& = \{v \mid \exists u, u \in A \cup B \land uFv\} \\
|
||||
& = \{v \mid \exists u,
|
||||
(u \in A \land uFv) \lor (u \in B \land uFv)\} \\
|
||||
& = \{v \mid (\exists u \in A) uFv\} \cup
|
||||
\{v \mid (\exists u \in B) uFv\} \\
|
||||
& = \img{F}{A} \cup \img{F}{B}.
|
||||
\end{align*}
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
We prove that both sides of \eqref{sub:theorem-3k-a-eq2} is a subset of the
|
||||
other.
|
||||
|
||||
\subparagraph{($\subseteq$)}%
|
||||
|
||||
Let $v \in \img{F}{\bigcup{\mathscr{A}}}$.
|
||||
By definition of the \nameref{ref:image} of a set, there exists a set $u$
|
||||
such that $u \in \bigcup{\mathscr{A}} \land uFv$.
|
||||
Then, by definition of the union of sets, there exists some
|
||||
$A \in \mathscr{A}$ such that $u \in A$.
|
||||
Therefore $v \in \img{F}{A}$ meaning
|
||||
$v \in \bigcup\{\img{F}{A} \mid A \in \mathscr{A}\}$.
|
||||
|
||||
\subparagraph{($\supseteq$)}%
|
||||
|
||||
Let $v \in \bigcup\{\img{F}{A} \mid A \in \mathscr{A}\}$.
|
||||
Then there exists some $b \in \{\img{F}{A} \mid A \in \mathscr{A}\}$ such
|
||||
that $v \in b$.
|
||||
In other words, there exists some $A \in \mathscr{A}$ such that
|
||||
$v \in b = \img{F}{A}$.
|
||||
By definition of the \nameref{ref:image} of a set, there exists a set $u$
|
||||
such that $u \in A \land uFv$.
|
||||
But this implies that $u \in \bigcup{\mathscr{A}} \land uFv$.
|
||||
Therefore $v \in \img{F}{\bigcup{\mathscr{A}}}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Corollary 3L}}%
|
||||
\subsection{\partial{Theorem 3K(b)}}%
|
||||
\label{sub:theorem-3k-b}
|
||||
|
||||
\begin{theorem}[3K(b)]
|
||||
|
||||
The following hold for any sets. ($F$ need not be a function.)
|
||||
The image of an intersection is included in the intersection of the images:
|
||||
\begin{equation}
|
||||
\label{sub:theorem-3k-b-eq1}
|
||||
\img{F}{A \cap B} \subseteq \img{F}{A} \cap \img{F}{B}
|
||||
\end{equation}
|
||||
and
|
||||
\begin{equation}
|
||||
\label{sub:theorem-3k-b-eq2}
|
||||
\img{F}{\bigcap\mathscr{A}} \subseteq
|
||||
\bigcap\;\{\img{F}{A} \mid A \in \mathscr{A}\}.
|
||||
\end{equation}
|
||||
Equality holds if $F$ is single-rooted.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $F$, $A$, $B$, and $\mathscr{A}$ be arbitrary sets.
|
||||
We first prove (i) \eqref{sub:theorem-3k-b-eq1} and (ii)
|
||||
\eqref{sub:theorem-3k-b-eq2}.
|
||||
Then, assuming $F$ is single-rooted, we prove both (iii)
|
||||
\eqref{sub:theorem-3k-b-eq1} and (iv) \eqref{sub:theorem-3k-b-eq2} hold
|
||||
under equality.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\label{par:theorem-3k-b-i}
|
||||
|
||||
Let $v \in \img{F}{A \cap B}$.
|
||||
By definition of the \nameref{ref:image} of a set,
|
||||
$\exists u \in A \cap B, uFv$.
|
||||
Then $u \in A \land uFv$ and $u \in B \land uFv$.
|
||||
Therefore $v \in \img{F}{A} \cap \img{F}{B}$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\label{par:theorem-3k-b-ii}
|
||||
|
||||
Let $v \in \img{F}{\bigcap{\mathscr{A}}}$.
|
||||
By definition of the \nameref{ref:image} of a set,
|
||||
$\exists u \in \bigcap{\mathscr{A}}, uFv$.
|
||||
Then $\exists u, (\forall A \in \mathscr{A}, u \in A) \land uFv$.
|
||||
This implies that $\forall A \in \mathscr{A}, \exists u \in A, uFv$.
|
||||
Then $\forall A \in \mathscr{A}, v \in \img{F}{A}$.
|
||||
Thus $v \in \bigcap\{\img{F}{A} \mid A \in \mathscr{A}\}$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
Suppose $F$ is single-rooted.
|
||||
By \nameref{par:theorem-3k-b-i},
|
||||
$$\img{F}{A \cap B} \subseteq \img{F}{A} \cap \img{F}{B}.$$
|
||||
All that remains is showing
|
||||
$$\img{F}{A} \cap \img{F}{B} \subseteq \img{F}{A \cap B}.$$
|
||||
Let $v \in \img{F}{A} \cap \img{F}{B}$.
|
||||
Then $v \in \img{F}{A}$ and $v \in \img{F}{B}$.
|
||||
That is, $\exists u \in A, uFv$ and $\exists w \in B, wFv$.
|
||||
Since $F$ is single rooted, it follows $u = w$.
|
||||
Thus $u \in A \cap B \land uFv$ meaning $v \in \img{F}{A \cap B}$.
|
||||
|
||||
\paragraph{(iv)}%
|
||||
|
||||
Suppose $F$ is single-rooted.
|
||||
By \nameref{par:theorem-3k-b-ii},
|
||||
$$\img{F}{\bigcap\mathscr{A}} \subseteq
|
||||
\bigcap\;\{\img{F}{A} \mid A \in \mathscr{A}\}.$$
|
||||
All that remains is showing
|
||||
$$\bigcap\;\{\img{F}{A} \mid A \in \mathscr{A}\} \subseteq
|
||||
\img{F}{\bigcap\mathscr{A}}.$$
|
||||
Let $v \in \bigcap\;\{\img{F}{A} \mid A \in \mathscr{A}\}$.
|
||||
Then $\forall A \in \mathscr{A}, v \in \img{F}{A}$.
|
||||
By definition of the \nameref{ref:image} of a set,
|
||||
$\forall A \in \mathscr{A}, \exists u \in A, uFv$.
|
||||
Since $F$ is single-rooted, it follows that
|
||||
$\exists u, \forall A \in \mathscr{A}, u \in A \land uFv$.
|
||||
Equivalently, $\exists u \in \bigcap{A}, uFv$.
|
||||
Thus $v \in \img{F}{\bigcap{A}}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Theorem 3K(c)}}%
|
||||
\label{sub:theorem-3k-c}
|
||||
|
||||
\begin{theorem}[3K(c)]
|
||||
|
||||
The following hold for any sets. ($F$ need not be a function.)
|
||||
The image of a difference includes the difference of the images:
|
||||
\begin{equation}
|
||||
\label{sub:theorem-3k-c-eq1}
|
||||
\img{F}{A} - \img{F}{B} \subseteq \img{F}{A - B}.
|
||||
\end{equation}
|
||||
Equality holds if $F$ is single-rooted.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
We prove that (i) \eqref{sub:theorem-3k-c-eq1} holds and (ii) equality holds
|
||||
if $F$ is single-rooted.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\label{par:theorem-3k-c-i}
|
||||
|
||||
Let $v \in \img{F}{A} - \img{F}{B}$.
|
||||
By definition of the difference of two sets,
|
||||
$v \in \img{F}{A}$ and $v \not\in \img{F}{B}$.
|
||||
By definition of the \nameref{ref:image} of a set, there exists a set
|
||||
$u \in A$ such that $\left< u, v \right> \in F$.
|
||||
Likewise, $\forall w \in B, \left< w, v \right> \not\in F$.
|
||||
Thus $u \not\in B$, since otherwise we get an immediate contradiction.
|
||||
Therefore $u \in A - B$ meaning $v \in \img{F}{A - B}$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Suppose $F$ is single-rooted.
|
||||
By \nameref{par:theorem-3k-c-i},
|
||||
$$\img{F}{A} - \img{F}{B} \subseteq \img{F}{A - B}.$$
|
||||
All that remains is showing
|
||||
$$\img{F}{A - B} \subseteq \img{F}{A} - \img{F}{B}.$$
|
||||
Let $v \in \img{F}{A - B}$.
|
||||
By definition of the \nameref{ref:image} of a set, there exists a set
|
||||
$u \in A - B$ such that $uFv$.
|
||||
Then $u \in A$ and $u \not\in B$.
|
||||
The former membership relation implies $v \in \img{F}{A}$.
|
||||
The latter implies $v \not\in \img{F}{B}$ since $F$ being single-rooted
|
||||
would otherwise invoke an immediate contradiction.
|
||||
Thus $v \in \img{F}{A} - \img{F}{B}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\partial{Corollary 3L}}%
|
||||
\label{sub:corollary-3l}
|
||||
|
||||
\begin{theorem}[3L]
|
||||
|
||||
For any function $G$ and sets $A$, $B$, and $\mathscr{A}$:
|
||||
\begin{align*}
|
||||
G^{-1}\left[\bigcup\mathscr{A}\right]
|
||||
& = \bigcup\;\{G^{-1}[A] \mid A \in \mathscr{A}\}, \\
|
||||
\begin{align}
|
||||
G^{-1}\left\llbracket\bigcup\mathscr{A}\right\rrbracket
|
||||
& = \bigcup\;\{G^{-1}[A] \mid A \in \mathscr{A}\},
|
||||
\label{sub:corollary-3l-eq1} \\
|
||||
G^{-1}\left[\bigcap\mathscr{A}\right]
|
||||
& = \bigcap\;\{G^{-1}[A] \mid A \in \mathscr{A}\}
|
||||
\text{ for } \mathscr{A} \neq \emptyset, \\
|
||||
G^{-1}[A - B]
|
||||
& = G^{-1}[A] - G^{-1}[B].
|
||||
\end{align*}
|
||||
\text{ for } \mathscr{A} \neq \emptyset,
|
||||
\label{sub:corollary-3l-eq2} \\
|
||||
G^{-1}[A - B] & = G^{-1}[A] - G^{-1}[B].
|
||||
\label{sub:corollary-3l-eq3}
|
||||
\end{align}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\nameref{sub:theorem-3k-a} implies \eqref{sub:corollary-3l-eq1}.
|
||||
Because the inverse of a function is always single-rooted,
|
||||
\nameref{sub:theorem-3k-b} implies \eqref{sub:corollary-3l-eq2}.
|
||||
Likewise \nameref{sub:theorem-3k-c} implies \eqref{sub:corollary-3l-eq3}.
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
\usepackage{fontawesome5}
|
||||
\usepackage{mathrsfs}
|
||||
\usepackage{soul}
|
||||
\usepackage{stmaryrd}
|
||||
\usepackage[usenames,dvipsnames]{xcolor}
|
||||
% `hyperref` comes after `xr-hyper`.
|
||||
\usepackage{xr-hyper}
|
||||
|
|
Loading…
Reference in New Issue