Finish Apostol 1.18-1.19.
parent
7d68ab1624
commit
759b17f802
|
@ -54,6 +54,15 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\partial{Integrable}}%
|
||||||
|
\label{sec:def-integrable}
|
||||||
|
|
||||||
|
Let $f$ be a function defined and bounded on $[a, b]$.
|
||||||
|
$f$ is said to be \textbf{integrable} if there exists one and only one number
|
||||||
|
$I$ such that \eqref{sec:def-integral-bounded-function-eq2} holds.
|
||||||
|
If $f$ is integrable on $[a, b]$, we say that the integral
|
||||||
|
$\int_a^b f(x) \mathop{dx}$ \textbf{exists}.
|
||||||
|
|
||||||
\section{\partial{Integral of a Bounded Function}}%
|
\section{\partial{Integral of a Bounded Function}}%
|
||||||
\label{sec:def-integral-bounded-function}
|
\label{sec:def-integral-bounded-function}
|
||||||
|
|
||||||
|
@ -65,19 +74,18 @@ Let $s$ and $t$ denote arbitrary step functions defined on $[a, b]$ such that
|
||||||
\end{equation}
|
\end{equation}
|
||||||
for every $x$ in $[a, b]$.
|
for every $x$ in $[a, b]$.
|
||||||
If there is one and only one number $I$ such that
|
If there is one and only one number $I$ such that
|
||||||
$$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$
|
\begin{equation}
|
||||||
|
\label{sec:def-integral-bounded-function-eq2}
|
||||||
|
\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}
|
||||||
|
\end{equation}
|
||||||
for every pair of step functions $s$ and $t$ satisfying
|
for every pair of step functions $s$ and $t$ satisfying
|
||||||
\eqref{sec:def-integral-bounded-function-eq1}, then this number $I$ is called
|
\eqref{sec:def-integral-bounded-function-eq1}, then this number $I$ is called
|
||||||
the \textbf{integral of $f$ from $a$ to $b$}, and is denoted by the symbol
|
the \textbf{integral of $f$ from $a$ to $b$}, and is denoted by the symbol
|
||||||
$\int_a^b f(x) \mathop{dx}$ or by $\int_a^b f$.
|
$\int_a^b f(x) \mathop{dx}$ or by $\int_a^b f$.
|
||||||
When such an $I$ exists, the function $f$ is said to be
|
|
||||||
\textbf{integrable on $[a, b]$}.
|
|
||||||
|
|
||||||
If $a < b$, we define $\int_b^a f(x) \mathop{dx} = -\int_a^b f(x) \mathop{dx}$,
|
If $a < b$, we define $\int_b^a f(x) \mathop{dx} = -\int_a^b f(x) \mathop{dx}$,
|
||||||
provided $f$ is integrable on $[a, b]$.
|
provided $f$ is \nameref{sec:def-integrable} on $[a, b]$.
|
||||||
We also define $\int_a^a f(x) \mathop{dx} = 0$.
|
We also define $\int_a^a f(x) \mathop{dx} = 0$.
|
||||||
If $f$ is integrable on $[a, b]$, we say that the integral
|
|
||||||
$\int_a^b f(x) \mathop{dx}$ \textbf{exists}.
|
|
||||||
|
|
||||||
The function $f$ is called the \textbf{integrand}, the numbers $a$ and $b$ are
|
The function $f$ is called the \textbf{integrand}, the numbers $a$ and $b$ are
|
||||||
called the \textbf{limits of integration}, and the interval $[a, b]$ the
|
called the \textbf{limits of integration}, and the interval $[a, b]$ the
|
||||||
|
@ -692,8 +700,8 @@ Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so
|
||||||
S \subseteq Q \subseteq T.
|
S \subseteq Q \subseteq T.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
If there is one and only one number $c$ which satisfies the inequalities
|
If there is one and only one number $c$ which satisfies the inequalities
|
||||||
$$a(S) \leq c \leq a(T)$$ for all step regions $S$ and $T$ satisfying (1.1),
|
$$a(S) \leq c \leq a(T)$$ for all step regions $S$ and $T$ satisfying
|
||||||
then $Q$ is measurable and $a(Q) = c$.
|
\eqref{sec:exhaustion-property-eq1}, then $Q$ is measurable and $a(Q) = c$.
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
|
@ -2506,7 +2514,7 @@ If $s(x) < t(x)$ for each $x$ in $[a, b]$, then $\int_a^b s < \int_a^b t$.
|
||||||
\chapter{Upper and Lower Integrals}%
|
\chapter{Upper and Lower Integrals}%
|
||||||
\label{chap:upper-lower-integrals}
|
\label{chap:upper-lower-integrals}
|
||||||
|
|
||||||
\section{\unverified{Theorem 1.9}}%
|
\section{\partial{Theorem 1.9}}%
|
||||||
\label{sec:theorem-1.9}
|
\label{sec:theorem-1.9}
|
||||||
|
|
||||||
Every function $f$ which is bounded on $[a, b]$ has a lower integral
|
Every function $f$ which is bounded on $[a, b]$ has a lower integral
|
||||||
|
@ -2518,8 +2526,8 @@ Every function $f$ which is bounded on $[a, b]$ has a lower integral
|
||||||
\bar{I}(f) \leq \int_a^b t(x) \mathop{dx}
|
\bar{I}(f) \leq \int_a^b t(x) \mathop{dx}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
for all \nameref{sec:def-step-function}s $s$ and $t$ with $s \leq f \leq t$.
|
for all \nameref{sec:def-step-function}s $s$ and $t$ with $s \leq f \leq t$.
|
||||||
The function $f$ is integrable on $[a, b]$ if and only if its upper and lower
|
The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if
|
||||||
integrals are equal, in which case we have
|
its upper and lower integrals are equal, in which case we have
|
||||||
$$\int_a^b f(x) \mathop{dx} = \ubar{I}(f) = \bar{I}(f).$$
|
$$\int_a^b f(x) \mathop{dx} = \ubar{I}(f) = \bar{I}(f).$$
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
@ -2567,4 +2575,78 @@ The function $f$ is integrable on $[a, b]$ if and only if its upper and lower
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\chapter{The Area of an Ordinate Set Expressed as an Interval}%
|
||||||
|
\label{chap:area-ordinate-set-expressed-interval}
|
||||||
|
|
||||||
|
\section{Theorem 1.10}%
|
||||||
|
\label{sec:theorem-1.10}
|
||||||
|
|
||||||
|
Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval
|
||||||
|
$[a, b]$, and let $Q$ denote the ordinate set of $f$ over $[a, b]$.
|
||||||
|
Then $Q$ is measurable and its area is equal to the integral
|
||||||
|
$\int_a^b f(x) \mathop{dx}$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on $[a, b]$.
|
||||||
|
By definition of integrability, there exists one and only one number $I$ such
|
||||||
|
that $$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$ for
|
||||||
|
every pair of step functions $s$ and $t$ satisfying
|
||||||
|
\eqref{sec:def-integral-bounded-function-eq1}.
|
||||||
|
In other words, $I$ is the one and only number that satisfies
|
||||||
|
$$a(S) \leq I \leq a(T)$$ for every pair of step regions
|
||||||
|
$S \subseteq Q \subseteq T$.
|
||||||
|
By the \nameref{sec:area-exhaustion-property}, $Q$ is measurable and its area
|
||||||
|
is equal to $I = \int_a^b f(x) \mathop{dx}$.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\section{Theorem 1.11}%
|
||||||
|
\label{sec:theorem-1.11}
|
||||||
|
|
||||||
|
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.
|
||||||
|
Then the graph of $f$, that is, the set
|
||||||
|
\begin{equation}
|
||||||
|
\label{sec:theorem-1.11-eq1}
|
||||||
|
\{(x, y) | a \leq x \leq b, y = f(x)\},
|
||||||
|
\end{equation}
|
||||||
|
is measurable and has area equal to $0$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.
|
||||||
|
Let $$Q' = \{(x, y) \mid a \leq x \leq b, 0 \leq y < f(x)\}.$$
|
||||||
|
We show that (i) $Q'$ is measurable with area equal to
|
||||||
|
$\int_a^b f(x) \mathop{dx}$ and (ii) the graph of $f$ is meaurable with area
|
||||||
|
equal to $0$.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
\label{par:theorem-1.11-i}
|
||||||
|
|
||||||
|
By definition of integrability, there exists one and only one number $I$
|
||||||
|
such that
|
||||||
|
$$\int_a^b s(x) \mathop{dx} \leq I \leq \int_a^b t(x) \mathop{dx}$$
|
||||||
|
for every pair of step functions $s$ and $t$ satisfying
|
||||||
|
\eqref{sec:def-integral-bounded-function-eq1}.
|
||||||
|
In other words, $I$ is the one and only number that satisfies
|
||||||
|
$$a(S) \leq I \leq a(T)$$ for every pair of step regions
|
||||||
|
$S \subseteq Q' \subseteq T$.
|
||||||
|
By the \nameref{sec:area-exhaustion-property}, $Q'$ is measurable and its
|
||||||
|
area is equal to $I = \int_a^b f(x) \mathop{dx}$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
|
||||||
|
Let $Q$ denote the ordinate set of $f$.
|
||||||
|
By \nameref{sec:theorem-1.11}, $Q$ is measurable with area equal to the
|
||||||
|
integral $I = \int_a^b f(x) \mathop{dx}$.
|
||||||
|
By \nameref{par:theorem-1.11-i}, $Q'$ is measurable with area also equal to
|
||||||
|
$I$.
|
||||||
|
We note the graph of $f$, \eqref{sec:theorem-1.11-eq1}, is equal to set
|
||||||
|
$Q - Q'$.
|
||||||
|
By the \nameref{sec:area-difference-property}, $Q - Q'$ is measurable and
|
||||||
|
$$a(Q - Q') = a(Q) - a(Q') = I - I = 0.$$
|
||||||
|
Thus the graph of $f$ is measurable and has area equal to $0$.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Reference in New Issue