Add similar/congruent definitions.
parent
1d2fcf916b
commit
71db452d96
|
@ -1,3 +1,4 @@
|
|||
import Common.Data.Real.Geometry
|
||||
import Common.Data.Real.Set
|
||||
import Common.Data.Real.Sequence
|
||||
import Common.Tuple
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
import Mathlib.Data.Real.Sqrt
|
||||
import Mathlib.Logic.Function.Basic
|
||||
|
||||
namespace Real
|
||||
|
||||
notation "ℝ²" => ℝ × ℝ
|
||||
|
||||
noncomputable def dist (x y : ℝ²) :=
|
||||
Real.sqrt ((abs (y.1 - x.1)) ^ 2 + (abs (y.2 - x.2)) ^ 2)
|
||||
|
||||
def similar (S T : Set ℝ²) : Prop :=
|
||||
∃ f : ℝ² → ℝ², Function.Bijective f ∧
|
||||
∃ s : ℝ, ∀ x y : ℝ², x ∈ S ∧ y ∈ T →
|
||||
s * dist x y = dist (f x) (f y)
|
||||
|
||||
def congruent (S T : Set (ℝ × ℝ)) : Prop :=
|
||||
∃ f : ℝ² → ℝ², Function.Bijective f ∧
|
||||
∀ x y : ℝ², x ∈ S ∧ y ∈ T →
|
||||
dist x y = dist (f x) (f y)
|
||||
|
||||
theorem congruent_similar {S T : Set ℝ²} : congruent S T → similar S T := by
|
||||
intro hc
|
||||
let ⟨f, ⟨hf, hs⟩⟩ := hc
|
||||
conv at hs => intro x y hxy; arg 1; rw [← one_mul (dist x y)]
|
||||
exact ⟨f, ⟨hf, ⟨1, hs⟩⟩⟩
|
||||
|
||||
end Real
|
Loading…
Reference in New Issue