Setup for local navigation between Lean index and LaTeX.
parent
e2d293fc3f
commit
6f3ac8a946
|
@ -1,34 +1,35 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../../preamble}
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\linkA}[1]{\href{/doc/Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}}
|
||||
\newcommand{\linkG}[1]{\href{/doc/Bookshelf/Real/Sequence/Geometric.html\##1}{#1}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{theorem}[Sum of Arithmetic Series]
|
||||
\section*{Sum of Arithmetic Series}%
|
||||
\label{sec:sum-arithmetic-series}
|
||||
|
||||
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
||||
Then for some $n \in \mathbb{N}$,
|
||||
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
||||
|
||||
\end{theorem}
|
||||
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
||||
Then for some $n \in \mathbb{N}$,
|
||||
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Sequence/Arithmetic.lean}{Bookshelf.Real.Sequence.Arithmetic.sum_recursive_closed}
|
||||
\linkA{Real.Arithmetic.sum\_recursive\_closed}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}[Sum of Geometric Series]
|
||||
\section*{Sum of Geometric Series}%
|
||||
\label{sec:sum-geometric-series}
|
||||
|
||||
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
||||
Then for some $n \in \mathbb{N}$,
|
||||
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
||||
|
||||
\end{theorem}
|
||||
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
||||
Then for some $n \in \mathbb{N}$,
|
||||
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Sequence/Geometric.lean}{Bookshelf.Real.Sequence.Geometric.sum_recursive_closed}
|
||||
\linkG{Real.Geometric.sum\_recursive\_closed}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -1,19 +1,20 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../../preamble}
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\href{/doc/MathematicalIntroductionLogic/Enderton/Chapter0.html\##1}{#1}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{theorem}[Lemma 0A]
|
||||
\section*{Lemma 0A}%
|
||||
\label{sec:lemma-0a}
|
||||
|
||||
Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||||
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
||||
|
||||
\end{theorem}
|
||||
Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||||
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter0.lean}{Enderton.Chapter0.lemma_0a}
|
||||
\link{lemma\_0a}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -1,14 +1,16 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../preamble}
|
||||
\input{preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\newcommand{\bird}[1]{\item{\makebox[5cm][l]{\textbf{#1:}}}}
|
||||
|
||||
A list of birds as defined in \textit{To Mock a Mockingbird}.
|
||||
\section*{Aviary}%
|
||||
\label{sec:aviary}
|
||||
|
||||
Refer to \href{Aviary.lean}{Smullyan/Aviary.lean} for implementation examples.
|
||||
A list of birds as defined in \textit{To Mock a Mockingbird}.
|
||||
Refer to \href{/doc/MockMockingbird/Aviary.html}{MockMockingbird/Aviary} for implementation examples.
|
||||
|
||||
\begin{itemize}
|
||||
\bird{Bald Eagle} $\hat{E}xy_1y_2y_3z_1z_2z_3 = x(y_1y_2y_3)(z_1z_2z_3)$
|
||||
|
|
|
@ -1,123 +1,114 @@
|
|||
\documentclass{article}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
|
||||
\input{../../../preamble}
|
||||
\input{preamble}
|
||||
|
||||
\newcommand{\link}[1]{\href{/doc/OneVariableCalculus/Apostol/Chapter_I_3.html\##1}{#1}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{xtheorem}{I.27}
|
||||
\section*{Theorem I.27}%
|
||||
\label{sec:theorem-i.27}
|
||||
|
||||
Every nonempty set $S$ that is bounded below has a greatest lower bound; that
|
||||
is, there is a real number $L$ such that $L = \inf{S}$.
|
||||
|
||||
\end{xtheorem}
|
||||
Every nonempty set $S$ that is bounded below has a greatest lower bound; that
|
||||
is, there is a real number $L$ such that $L = \inf{S}$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB}
|
||||
\link{Real.exists\_isGLB}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.29}
|
||||
\section*{Theorem I.29}%
|
||||
\label{sec:theorem-i.29}
|
||||
|
||||
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||
|
||||
\end{xtheorem}
|
||||
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self}
|
||||
\link{Real.exists\_pnat\_geq\_self}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.30}[Archimedean Property of the Reals]
|
||||
\section*{Theorem I.30 (Archimedean Property of the Reals)}%
|
||||
\label{sec:theorem-i.30}
|
||||
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
|
||||
integer $n$ such that $nx > y$.
|
||||
|
||||
\end{xtheorem}
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
|
||||
integer $n$ such that $nx > y$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos}
|
||||
\link{Real.exists\_pnat\_mul\_self\_geq\_of\_pos}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.31}
|
||||
\section*{Theorem I.31}%
|
||||
\label{sec:theorem-i.31}
|
||||
|
||||
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||
$$a \leq x \leq a + \frac{y}{n}$$
|
||||
for every integer $n \geq 1$, then $x = a$.
|
||||
|
||||
\end{xtheorem}
|
||||
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||
$$a \leq x \leq a + \frac{y}{n}$$
|
||||
for every integer $n \geq 1$, then $x = a$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq}
|
||||
\link{Real.forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.32}
|
||||
\section*{Theorem I.32}%
|
||||
\label{sec:theorem-i.32}
|
||||
|
||||
Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
||||
\begin{enumerate}[(a)]
|
||||
Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
||||
\begin{enumerate}[(a)]
|
||||
\item If $S$ has a supremum, then for some $x$ in $S$ we have
|
||||
$$x > \sup{S} - h.$$
|
||||
\item If $S$ has an infimum, then for some $x$ in $S$ we have
|
||||
$$x < \inf{S} + h.$$
|
||||
\end{enumerate}
|
||||
|
||||
\end{xtheorem}
|
||||
\end{enumerate}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\ % Force space prior to *Proof.*
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.sup_imp_exists_gt_sup_sub_delta}
|
||||
\item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.inf_imp_exists_lt_inf_add_delta}
|
||||
\item \link{Real.sup\_imp\_exists\_gt\_sup\_sub\_delta}
|
||||
\item \link{Real.inf\_imp\_exists\_lt\_inf\_add\_delta}
|
||||
\end{enumerate}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.33}[Additive Property]
|
||||
\section*{Theorem I.33 (Additive Property)}%
|
||||
\label{sec:theorem-i.33}
|
||||
|
||||
Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
|
||||
$$C = \{a + b : a \in A, b \in B\}.$$
|
||||
Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
|
||||
$$C = \{a + b : a \in A, b \in B\}.$$
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\begin{enumerate}[(a)]
|
||||
\item If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and
|
||||
$$\sup{C} = \sup{A} + \sup{B}.$$
|
||||
\item If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and
|
||||
$$\inf{C} = \inf{A} + \inf{B}.$$
|
||||
\end{enumerate}
|
||||
|
||||
\end{xtheorem}
|
||||
\end{enumerate}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\ % Force space prior to *Proof.*
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.sup_minkowski_sum_eq_sup_add_sup}
|
||||
\item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.inf_minkowski_sum_eq_inf_add_inf}
|
||||
\item \link{Real.sup\_minkowski\_sum\_eq\_sup\_add\_sup}
|
||||
\item \link{Real.inf\_minkowski\_sum\_eq\_inf\_add\_inf}
|
||||
\end{enumerate}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.34}
|
||||
\section*{Theorem I.34}%
|
||||
\label{sec:theorem-i.34}
|
||||
|
||||
Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that
|
||||
$$s \leq t$$
|
||||
for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$
|
||||
has an infimum, and they satisfy the inequality
|
||||
$$\sup{S} \leq \inf{T}.$$
|
||||
|
||||
\end{xtheorem}
|
||||
Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that
|
||||
$$s \leq t$$
|
||||
for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$
|
||||
has an infimum, and they satisfy the inequality
|
||||
$$\sup{S} \leq \inf{T}.$$
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_mem_le_forall_mem_imp_sup_le_inf}
|
||||
\link{Real.forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
13
README.md
13
README.md
|
@ -26,4 +26,15 @@ Run the following to build and serve this:
|
|||
|
||||
This assumes you have `python3` available in your `$PATH`. To change how the
|
||||
server behaves, refer to the `.env` file located in the root directory of this
|
||||
project.
|
||||
project. To also serve the corresponding LaTeX files scattered throughout this
|
||||
project, first install the following:
|
||||
|
||||
- `tex4ht`
|
||||
- `make4ht`
|
||||
- `luaxml`
|
||||
|
||||
Afterward, you can generate the necessary HTML via:
|
||||
|
||||
```bash
|
||||
> find . -name '*.tex' | grep -v preamble | xargs -I {} make4ht -e build.mk4 {}
|
||||
```
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
local mkutils = require 'mkutils'
|
||||
|
||||
local function get_parent_dir(file)
|
||||
local handle = io.popen(assert('dirname ' .. file))
|
||||
local dir = handle:read('a')
|
||||
handle:close()
|
||||
return dir:gsub('^%s*(.-)%s*$', '%1')
|
||||
end
|
||||
|
||||
local dir = get_parent_dir(arg[3])
|
||||
local outdir = 'build/tex/' .. dir .. '/' .. settings.input
|
||||
os.execute('mkdir -p ' .. outdir)
|
||||
|
||||
settings.input = outdir .. '/' .. settings.input
|
||||
settings.latex_par = '-output-directory=' .. outdir
|
||||
|
||||
Make:match('.css$', 'mv ${filename} ' .. outdir .. '/${filename}')
|
||||
Make:match('.png$', 'mv ${filename} ' .. outdir .. '/${filename}')
|
||||
Make:match('.tmp$', 'rm ${filename}')
|
||||
|
||||
Make:match('tmp$', function(filename)
|
||||
local basename = mkutils.remove_extension(filename)
|
||||
for _, ext in ipairs { 'aux', 'xref', '4ct', '4tc', 'dvi', 'idv', 'lg', 'log', 'tmp' } do
|
||||
os.remove(outdir .. '/' .. basename .. '.' .. ext)
|
||||
end
|
||||
end)
|
|
@ -56,9 +56,10 @@ USAGE:
|
|||
-/
|
||||
script «doc-server» (_args) do
|
||||
let ((), config) <- StateT.run readConfig {}
|
||||
IO.println s!"Running on `http://localhost:{config.port}`"
|
||||
IO.println s!"Running Lean on `http://localhost:{config.port}/doc`"
|
||||
IO.println s!"Running LaTeX on `http://localhost:{config.port}/tex`"
|
||||
_ <- IO.Process.run {
|
||||
cmd := "python3",
|
||||
args := #["-m", "http.server", toString config.port, "-d", "build/doc"],
|
||||
args := #["-m", "http.server", toString config.port, "-d", "build"],
|
||||
}
|
||||
return 0
|
||||
|
|
Loading…
Reference in New Issue