Endreton (logic). Proofs of "Finite Set" theorems.
parent
6c5fbf825a
commit
6eaea4b6a0
|
@ -8507,7 +8507,7 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 6B}}%
|
||||
\subsection{\pending{Theorem 6B}}%
|
||||
\hyperlabel{sub:theorem-6b}
|
||||
|
||||
\begin{theorem}[6B]
|
||||
|
@ -8530,7 +8530,7 @@
|
|||
\section{Finite Sets}%
|
||||
\hyperlabel{sec:finite-sets}
|
||||
|
||||
\subsection{\sorry{Pigeonhole Principle}}%
|
||||
\subsection{\pending{Pigeonhole Principle}}%
|
||||
\hyperlabel{sub:pigeonhole-principle}
|
||||
|
||||
\begin{theorem}
|
||||
|
@ -8538,10 +8538,70 @@
|
|||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
Let
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:pigeonhole-principle-eq1}
|
||||
S = \{n \in \omega \mid
|
||||
\forall m \in n, \text{every one-to-one function }
|
||||
f \colon m \rightarrow n \text{ is not onto}\}.
|
||||
\end{equation}
|
||||
We show that (i) $0 \in S$ and (ii) if $n \in S$, then so is $n^+$.
|
||||
Afterward we prove (iii) the theorem statement.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:pigeonhole-principle-i}
|
||||
|
||||
By \nameref{sub:zero-least-natural-number}, $0$ is the least natural
|
||||
number.
|
||||
Therefore, $0 \in S$ vacuously.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:pigeonhole-principle-ii}
|
||||
|
||||
Suppose $n \in S$ and let $m \in n^+$.
|
||||
Furthermore, let $f \colon m \rightarrow n^+$ be a one-to-one
|
||||
\nameref{ref:function} (as proof of a one-to-one function's existence,
|
||||
just consider the identity function).
|
||||
There are two cases to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
Suppose $n^+ \not\in \ran{f}$.
|
||||
Then it obviously follows $f$ is not onto $n^+$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
Suppose $n^+ \in \ran{f}$.
|
||||
Then there exists some $t$ such that $\tuple{t, n^+} \in f$.
|
||||
Consider $f' = f \restriction n$.
|
||||
Since $f$ is one-to-one, it follows $f'$ is also one-to-one.
|
||||
By \eqref{sub:pigeonhole-principle-eq1}, $f'$ is not onto $n$.
|
||||
That is, there exists some $p \in n$ such that $p \not\in \ran{f'}$.
|
||||
But since $p \in n \in n^+$, \nameref{sub:theorem-4f} implies
|
||||
$p \in n^+$.
|
||||
Furthermore, $p \not\in \ran{f}$ by virtue of how $f'$ was constructed.
|
||||
Thus $f$ is not onto $n^+$.
|
||||
|
||||
\subparagraph{Subconclusion}%
|
||||
|
||||
The foregoing cases are exhaustive.
|
||||
Hence $n^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:pigeonhole-principle-i} and
|
||||
\nameref{par:pigeonhole-principle-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||
Thus for all natural numbers $n$, there is no one-to-one correspondence
|
||||
between $n$ and a proper subset of $n$.
|
||||
In other words, no natural number is equinumerous to a proper subset of
|
||||
itself.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Corollary 6C}}%
|
||||
\subsection{\pending{Corollary 6C}}%
|
||||
\hyperlabel{sub:corollary-6c}
|
||||
|
||||
\begin{corollary}[6C]
|
||||
|
@ -8549,13 +8609,31 @@
|
|||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Let $S$ be a \nameref{ref:finite-set} and $S'$ be a
|
||||
\nameref{ref:proper-subset} $S'$ of $S$.
|
||||
Then there exists some nonempty set $T$, disjoint from $S'$, such that
|
||||
$S' \cup T = S$.
|
||||
By definition of a finite set, $S$ is \nameref{ref:equinumerous} to a
|
||||
natural number $n$.
|
||||
By \nameref{sub:theorem-6a}, $\equinumerous{S' \cup T}{S}$ which, by the
|
||||
same theorem, implies $\equinumerous{S' \cup T}{n}$.
|
||||
|
||||
Let $f$ be a one-to-one correspondence between $S' \cup T$ and $n$.
|
||||
Since $T$ is nonempty, $f \restriction S'$ is a one-to-one correspondence
|
||||
between $S'$ and a proper subset of $n$.
|
||||
By the \nameref{sub:pigeonhole-principle}, $n$ is not equinumerous to any
|
||||
proper subset of itself.
|
||||
Therefore \nameref{sub:theorem-6a} implies $S'$ cannot be equinumerous to
|
||||
$n$, which, by the same theorem, implies $S'$ cannot be equinumerous to
|
||||
$S$.
|
||||
Hence no finite set is equinumerous to a proper subset of itself.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Corollary 6D}}%
|
||||
\subsection{\pending{Corollary 6D}}%
|
||||
\hyperlabel{sub:corollary-6d}
|
||||
|
||||
\begin{corollary}[6D]
|
||||
\ % Force a newline.
|
||||
\begin{enumerate}[(a)]
|
||||
\item Any set equinumerous to a proper subset of itself is infinite.
|
||||
\item The set $\omega$ is infinite.
|
||||
|
@ -8563,10 +8641,56 @@
|
|||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
\paragraph{(a)}%
|
||||
\hyperlabel{par:corollary-6d-a}
|
||||
|
||||
Let $S$ be a set \nameref{ref:equinumerous} to \nameref{ref:proper-subset}
|
||||
$S'$ of itself.
|
||||
Then $S$ cannot be a \nameref{ref:finite-set} by
|
||||
\nameref{sub:corollary-6c}.
|
||||
By definition, $S$ is an \nameref{ref:infinite-set}.
|
||||
|
||||
\paragraph{(b)}%
|
||||
|
||||
Consider set $S = \{n \in \omega \mid n \text{ is even}\}$.
|
||||
We prove that (i) $S$ is \nameref{ref:equinumerous} to $\omega$ and (ii)
|
||||
that $\omega$ is infinite.
|
||||
|
||||
\subparagraph{(i)}%
|
||||
\hyperlabel{spar:corollary-6d-i}
|
||||
|
||||
Define $f \colon \omega \rightarrow S$ given by $f(n) = 2 \cdot n$.
|
||||
Notice $f$ is well-defined by the definition of an even natural number,
|
||||
introduced in \nameref{sub:exercise-4.14}.
|
||||
We first show $f$ is one-to-one and then that $f$ is onto.
|
||||
|
||||
Suppose $f(n_1) = f(n_2) = 2 \cdot n_1$.
|
||||
We must prove that $n_1 = n_2$.
|
||||
By the \nameref{sub:trichotomy-law-natural-numbers}, exactly one of the
|
||||
following may occur: $n_1 = n_2$, $n_1 < n_2$, or $n_2 < n_1$.
|
||||
If $n_1 < n_2$, then \nameref{sub:theorem-4n} implies
|
||||
$n_1 \cdot 2 < n_2 \cdot 2$.
|
||||
\nameref{sub:theorem-4k-5} then indicates $2 \cdot n_1 < 2 \cdot n_2$,
|
||||
a contradiction to $2 \cdot n_1 = 2 \cdot n_2$.
|
||||
A parallel argument holds for when $n_2 < n_1$.
|
||||
Thus $n_1 = n_2$.
|
||||
|
||||
Next, let $m \in S$.
|
||||
That is, $m$ is an even number.
|
||||
By definition, there exists some $n \in \omega$ such that
|
||||
$m = 2 \cdot n$.
|
||||
Thus $f(n) = m$.
|
||||
|
||||
\subparagraph{(ii)}%
|
||||
|
||||
By \nameref{spar:corollary-6d-i}, $\omega$ is equinumerous to a subset
|
||||
of itself.
|
||||
By \nameref{par:corollary-6d-a}, $\omega$ is infinite.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Corollary 6E}}%
|
||||
\subsection{\pending{Corollary 6E}}%
|
||||
\hyperlabel{sub:corollary-6e}
|
||||
|
||||
\begin{corollary}[6E]
|
||||
|
@ -8574,10 +8698,22 @@
|
|||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Let $S$ be a \nameref{ref:finite-set}.
|
||||
By definition $S$ is equinumerous to a natural number $n$.
|
||||
Suppose $S$ is equinumerous to another natural number $m$.
|
||||
By \nameref{sub:trichotomy-law-natural-numbers}, exactly one of three
|
||||
situations is possible: $n = m$, $n < m$, or $m < n$.
|
||||
|
||||
If $n < m$, then $\equinumerous{m}{S}$ and $\equinumerous{S}{n}$.
|
||||
By \nameref{sub:theorem-6a}, it follows $\equinumerous{m}{n}$.
|
||||
But \nameref{sub:pigeonhole-principle} indicates no natural number is
|
||||
equinumerous to a proper subset of itself, a contradiction.
|
||||
If $m < n$, a parallel argument applies.
|
||||
Hence $n = m$, proving every finite set is equinumerous to a unique natural
|
||||
number.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Lemma 6F}}%
|
||||
\subsection{\pending{Lemma 6F}}%
|
||||
\hyperlabel{sub:lemma-6f}
|
||||
|
||||
\begin{lemma}[6F]
|
||||
|
@ -8586,10 +8722,73 @@
|
|||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
Let
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:lemma-6f-eq1}
|
||||
S = \{n \in \omega \mid \forall C \subset n,
|
||||
\exists m < n \text{ such that } \equinumerous{C}{m}\}.
|
||||
\end{equation}
|
||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||
Afterward we prove (iii) the lemma statement.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:lemma-6f-i}
|
||||
|
||||
By definition, $0 = \emptyset$.
|
||||
Thus $0$ has no proper subsets.
|
||||
Hence $0 \in S$ vacuously.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:lemma-6f-ii}
|
||||
|
||||
Suppose $n \in S$ and consider $n^+$.
|
||||
By definition of the \nameref{ref:successor}, $n^+ = n \cup \{n\}$.
|
||||
Let $C$ be an arbitrary, \nameref{ref:proper-subset} of $n^+$.
|
||||
There are two cases to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
\hyperlabel{spar:lemma-6f-1}
|
||||
|
||||
Suppose $n \not\in C$.
|
||||
Then $C \subseteq n$.
|
||||
If $C$ is a proper subset of $n$, \eqref{sub:lemma-6f-eq1} implies $C$
|
||||
is \nameref{ref:equinumerous} to some $m < n < n^+$.
|
||||
If $C = n$, then \nameref{sub:theorem-6a} implies $C$ is equinumerous to
|
||||
$n < n^+$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
Suppose $n \in C$.
|
||||
Since $C$ is a proper subset of $n^+$, the set $n^+ - C$ is nonempty.
|
||||
By \nameref{sub:well-ordering-natural-numbers}, $n^+ - C$ has a least
|
||||
element, say $p$ (which does not equal $n$).
|
||||
Consider now set $C' = (C - \{n\}) \cup \{p\}$.
|
||||
By construction, $C' \subseteq n$.
|
||||
As seen in \nameref{spar:lemma-6f-1}, $C'$ is equinumerous to some
|
||||
$m < n^+$.
|
||||
|
||||
It suffices to show there exists a one-to-one correspondence between
|
||||
$C'$ and $C$, since then \nameref{sub:theorem-6a} implies $C$ is
|
||||
equinumerous to $m$ as well.
|
||||
Function $f \colon C' \rightarrow C$ given by
|
||||
$$f(x) = \begin{cases}
|
||||
n & \text{if } x = p \\
|
||||
x & \text{otherwise}
|
||||
\end{cases}$$
|
||||
is trivially one-to-one and onto as expected.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:lemma-6f-i} and \nameref{par:lemma-6f-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||
Therefore, for every proper subset $C$ of a natural number $n$, there
|
||||
exists some $m < n$ such that $\equinumerous{C}{n}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Corollary 6G}}%
|
||||
\subsection{\pending{Corollary 6G}}%
|
||||
\hyperlabel{sub:corollary-6g}
|
||||
|
||||
\begin{corollary}[6G]
|
||||
|
@ -8597,7 +8796,19 @@
|
|||
\end{corollary}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Let $S$ be a \nameref{ref:finite-set} and $S' \subseteq S$.
|
||||
Clearly, if $S' = S$, then $S'$ is finite.
|
||||
Therefore suppose $S'$ is a proper subset of $S$.
|
||||
|
||||
By definition of finite set, $S$ is \nameref{ref:equinumerous} to some
|
||||
natural number $n$.
|
||||
Let $f$ be a one-to-one correspondence between $S$ and $n$.
|
||||
Then $f \restriction S'$ is a one-to-one correspondence between $S'$ and
|
||||
some proper subset of $n$.
|
||||
By \nameref{sub:lemma-6f}, $\ran{(f \restriction S')}$ is equinumerous to
|
||||
some $m < n$.
|
||||
Then \nameref{sub:theorem-6a} indicates $\equinumerous{S'}{m}$.
|
||||
Hence $S'$ is a finite set.
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 6}%
|
||||
|
|
Loading…
Reference in New Issue