Enderton. Continue proving laws in "Axioms and Operations."
parent
995e0ce327
commit
6deeb57409
|
@ -897,49 +897,80 @@ For any sets $A$ and $B$,
|
|||
\paragraph{(i)}%
|
||||
|
||||
By the definition of the union of sets,
|
||||
$A \cup B = \{ x \mid x \in A \lor x \in B \}$.
|
||||
Since $\lor$ is commutative, it follows
|
||||
\begin{align*}
|
||||
A \cup B
|
||||
& = \{ x \mid x \in A \lor x \in B \} \\
|
||||
& = \{ x \mid x \in B \lor x \in A \} \\
|
||||
& = B \cup A,
|
||||
& = B \cup A.
|
||||
\end{align*}
|
||||
where the last equality follows again from the definition of the union of
|
||||
sets.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By the definition of the intersection of sets,
|
||||
$A \cap B = \{ x \mid x \in A \land x \in B \}$.
|
||||
Since $\land$ is commutative, it follows
|
||||
\begin{align*}
|
||||
A \cap B
|
||||
& = \{ x \mid x \in A \land x \in B \} \\
|
||||
& = \{ x \mid x \in B \land x \in A \} \\
|
||||
& = B \land A,
|
||||
& = B \land A.
|
||||
\end{align*}
|
||||
where the last equality follows again from the definition of the
|
||||
intersection of sets.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Associative Laws}}%
|
||||
\subsection{\verified{Associative Laws}}%
|
||||
\label{sub:associative-laws}
|
||||
|
||||
For any sets $A$, $B$ and $C$,
|
||||
\begin{align*}
|
||||
A \cup (B \cup C) & = (A \cup B) \cup C \\
|
||||
(A \cup B) \cup C & = A \cup (B \cup C)
|
||||
A \cap (B \cap C) & = (A \cap B) \cap C
|
||||
\end{align*}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.union\_assoc}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.inter\_assoc}
|
||||
|
||||
Let $A$, $B$, and $C$ be sets.
|
||||
We show (i) $A \cup (B \cup C) = (A \cup B) \cup C$ and then (ii)
|
||||
$A \cap (B \cap C) = (A \cap B) \cap C$.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By the definition of the union of sets,
|
||||
\begin{align*}
|
||||
A \cup (B \cup C)
|
||||
& = \{ x \mid x \in A \lor x \in (B \cup C) \} \\
|
||||
& = \{ x \mid x \in A \lor x \in \{ y \mid y \in B \lor C \}\} \\
|
||||
& = \{ x \mid x \in A \lor (x \in B \lor x \in C) \} \\
|
||||
& = \{ x \mid (x \in A \lor x \in B) \lor x \in C \} \\
|
||||
& = \{ x \mid x \in \{ y \mid y \in A \lor y \in B \} \lor
|
||||
x \in C \} \\
|
||||
& = \{ x \mid x \in (A \cup B) \lor x \in C \} \\
|
||||
& = (A \cup B) \cup C.
|
||||
\end{align*}
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By the definition of the intersection of sets,
|
||||
\begin{align*}
|
||||
A \cap (B \cap C)
|
||||
& = \{ x \mid x \in A \land x \in (B \cap C) \} \\
|
||||
& = \{ x \mid x \in A \land
|
||||
x \in \{ y \mid y \in B \land y \in C \}\} \\
|
||||
& = \{ x \mid x \in A \land (x \in B \land x \in C) \} \\
|
||||
& = \{ x \mid (x \in A \land x \in B) \land x \in C \} \\
|
||||
& = \{ x \mid x \in \{ y \mid y \in A \land y \in B \} \land
|
||||
x \in C \} \\
|
||||
& = \{ x \mid x \in (A \cap B) \land x \in C \} \\
|
||||
& = (A \cap B) \cap C.
|
||||
\end{align*}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Distributive Laws}}%
|
||||
\subsection{\verified{Distributive Laws}}%
|
||||
\label{sub:distributive-laws}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
|
@ -950,11 +981,49 @@ For any sets $A$, $B$, and $C$,
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.inter\_distrib\_left}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.union\_distrib\_left}
|
||||
|
||||
Let $A$, $B$, and $C$ be sets.
|
||||
We show (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and then (ii)
|
||||
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By the definition of the union and intersection of sets,
|
||||
\begin{align*}
|
||||
A \cap (B \cup C)
|
||||
& = \{ x \mid x \in A \land x \in B \cup C \} \\
|
||||
& = \{ x \mid x \in A \land
|
||||
x \in \{ y \mid y \in B \lor y \in C \}\} \\
|
||||
& = \{ x \mid x \in A \land (x \in B \lor x \in C) \} \\
|
||||
& = \{ x \mid (x \in A \land x \in B) \lor
|
||||
(x \in A \land x \in C) \} \\
|
||||
& = \{ x \mid x \in A \cap B \lor x \in A \cap C \} \\
|
||||
& = (A \cap B) \cup (A \cap C).
|
||||
\end{align*}
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By the definition of the union and intersection of sets,
|
||||
\begin{align*}
|
||||
A \cup (B \cap C)
|
||||
& = \{ x \mid x \in A \lor x \in B \cap C \} \\
|
||||
& = \{ x \mid x \in A \lor
|
||||
x \in \{ y \mid y \in B \land y \in C \}\} \\
|
||||
& = \{ x \mid x \in A \lor (x \in B \land x \in C) \} \\
|
||||
& = \{ x \mid (x \in A \lor x \in B) \land
|
||||
(x \in A \lor x \in C) \} \\
|
||||
& = \{ x \mid x \in A \cup B \land x \in A \cup C \} \\
|
||||
& = (A \cup B) \cap (A \cup C).
|
||||
\end{align*}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{De Morgan's Laws}}%
|
||||
\subsection{\verified{De Morgan's Laws}}%
|
||||
\label{sub:de-morgans-laws}
|
||||
|
||||
For any sets $A$, $B$, and $C$,
|
||||
|
@ -965,11 +1034,51 @@ For any sets $A$, $B$, and $C$,
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.diff\_inter\_diff}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.diff\_inter}
|
||||
|
||||
Let $A$, $B$, and $C$ be sets.
|
||||
We show (i) $C - (A \cup B) = (C - A) \cap (C - B)$ and then (ii)
|
||||
$C - (A \cap B) = (C - A) \cup (C - B)$.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By definition of the union, intersection, and relative complements of sets,
|
||||
\begin{align*}
|
||||
C - (A \cup B)
|
||||
& = \{ x \mid x \in C \land x \not\in A \cup B \} \\
|
||||
& = \{ x \mid x \in C \land
|
||||
x \not\in \{ y \mid y \in A \lor y \in B \}\} \\
|
||||
& = \{ x \mid x \in C \land \neg(x \in A \lor x \in B) \} \\
|
||||
& = \{ x \mid x \in C \land (x \not\in A \land x \not\in B) \} \\
|
||||
& = \{ x \mid (x \in C \land x \not\in A) \land
|
||||
(x \in C \land x \not\in B) \} \\
|
||||
& = \{ x \mid x \in (C - A) \land x \in (C - B) \} \\
|
||||
& = (C - A) \cap (C - B).
|
||||
\end{align*}
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By definition of the union, intersection, and relative complements of sets,
|
||||
\begin{align*}
|
||||
C - (A \cap B)
|
||||
& = \{ x \mid x \in C \land x \not\in A \cap B \} \\
|
||||
& = \{ x \mid x \in C \land
|
||||
x \not\in \{ y \mid y \in A \land y \in B \}\} \\
|
||||
& = \{ x \mid x \in C \land \neg(x \in A \land x \in B) \} \\
|
||||
& = \{ x \mid x \in C \land (x \not\in A \lor x \not\in B) \} \\
|
||||
& = \{ x \mid (x \in C \land x \not\in A) \lor
|
||||
(x \in C \land x \not\in B) \} \\
|
||||
& = \{ x \mid x \in (C - A) \lor x \in (C - B) \} \\
|
||||
& = (C - A) \cup (C - B).
|
||||
\end{align*}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{
|
||||
\subsection{\verified{%
|
||||
Identities Involving \texorpdfstring{$\emptyset$}{the Empty Set}}}%
|
||||
\label{sub:identitives-involving-empty-set}
|
||||
|
||||
|
@ -982,7 +1091,55 @@ For any set $A$,
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\statementpadding
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.union\_empty}
|
||||
|
||||
\lean*{Mathlib/Data/Set/Basic}{Set.inter\_empty}
|
||||
|
||||
\lean{Mathlib/Data/Set/Basic}{Set.inter\_diff\_self}
|
||||
|
||||
Let $A$ be an arbitrary set. We prove (i) that $A \cup \emptyset = A$, (ii)
|
||||
$A \cap \emptyset = \emptyset$, and (iii) $A \cap (C - A) = \emptyset$.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By definition of the emptyset and union of sets,
|
||||
\begin{align*}
|
||||
A \cup \emptyset
|
||||
& = \{ x \mid x \in A \lor x \in \emptyset \} \\
|
||||
& = \{ x \mid x \in A \lor F \} \\
|
||||
& = \{ x \mid x \in A \} \\
|
||||
& = A.
|
||||
\end{align*}
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By definition of the emptyset and intersection of sets,
|
||||
\begin{align*}
|
||||
A \cap \emptyset
|
||||
& = \{ x \mid x \in A \land x \in \emptyset \} \\
|
||||
& = \{ x \mid x \in A \land F \} \\
|
||||
& = \{ x \mid F \} \\
|
||||
& = \{ x \mid x \neq x \} \\
|
||||
& = \emptyset.
|
||||
\end{align*}
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By definition of the emptyset, and the intersection and relative complement
|
||||
of sets,
|
||||
\begin{align*}
|
||||
A \cap (C - A)
|
||||
& = \{ x \mid x \in A \land x \in C - A \} \\
|
||||
& = \{ x \mid x \in A \land
|
||||
x \in \{ y \mid y \in C \land y \not\in A \}\} \\
|
||||
& = \{ x \mid x \in A \land (x \in C \land x \not\in A) \} \\
|
||||
& = \{ x \mid x \in C \land F \} \\
|
||||
& = \{ x \mid F \} \\
|
||||
& = \{ x \mid x \neq x \} \\
|
||||
& = \emptyset.
|
||||
\end{align*}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
Loading…
Reference in New Issue