Enderton (logic). Finish all but exercise 1.2.14.
parent
c458eca8ae
commit
6c5fbf825a
|
@ -118,6 +118,9 @@
|
|||
a function $$v \colon \mathcal{S} \rightarrow \{F, T\}$$ assigning either
|
||||
$T$ or $F$ to each symbol in $\mathcal{S}$.
|
||||
|
||||
\suitdivider
|
||||
|
||||
\noindent
|
||||
Let $\bar{\mathcal{S}}$ be the set of \nameref{ref:well-formed-formula}s that
|
||||
can be built up from $\mathcal{S}$ by the five
|
||||
\nameref{ref:formula-building-operations}.
|
||||
|
@ -246,6 +249,7 @@
|
|||
{Enderton.Logic.Chapter\_1.Wff.rec}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
We note every well-formed formula can be characterized by a
|
||||
\nameref{ref:construction-sequence}.
|
||||
For natural number $m$, let $P(m)$ be the statement:
|
||||
|
@ -1586,7 +1590,7 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.2.10}}%
|
||||
\subsection{\unverified{Exercise 1.2.10}}%
|
||||
\hyperlabel{sub:exercise-1.2.10}
|
||||
|
||||
Say that a set $\Sigma_1$ of wffs is \textit{equivalent} to a set $\Sigma_2$
|
||||
|
@ -1596,36 +1600,126 @@
|
|||
tautologically implied by the remaining members in $\Sigma$.
|
||||
Show that the following hold.
|
||||
|
||||
\subsubsection{\sorry{Exercise 1.2.10a}}%
|
||||
\subsubsection{\unverified{Exercise 1.2.10a}}%
|
||||
\hyperlabel{ssub:exercise-1.2.10a}
|
||||
|
||||
A finite set of wffs has an independent equivalent subset.
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
For natural number $n$, let $P(n)$ be the statement:
|
||||
\begin{induction}
|
||||
\hyperlabel{sub:exercise-1.2.10a-ih}
|
||||
A set of wffs \nameref{S:ref:equinumerous} to $n$ has an independent
|
||||
equivalent subset.
|
||||
\end{induction}
|
||||
\noindent
|
||||
We proceed by induction on $n$.
|
||||
|
||||
\paragraph{Base Case}%
|
||||
|
||||
Consider a finite set of wffs equinumerous to $0$.
|
||||
This is simply the empty set.
|
||||
It is vacuously true that $\emptyset$ is independent.
|
||||
Thus $\emptyset \subseteq \emptyset$ is an independent equivalent subset
|
||||
meaning $P(0)$ is true.
|
||||
|
||||
\paragraph{Inductive Step}%
|
||||
|
||||
Suppose $P(n)$ holds true for some $n \geq 0$.
|
||||
That is, every finite set of wffs equinumerous to $n$ has an independent
|
||||
equivalent subset.
|
||||
Consider now set $\Sigma$ of wffs equinumerous to $n + 1$.
|
||||
There are two possibilities to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
Suppose $\Sigma$ is independent.
|
||||
Then $\Sigma \subseteq \Sigma$ is an independent equivalent subset.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
Suppose $\Sigma$ is not independent.
|
||||
Then there exists some $\sigma \in \Sigma$ such that $\sigma$ is
|
||||
tautologically implied by the remaining members of $\Sigma$.
|
||||
Let $\Sigma_1 = \Sigma - \{\sigma\}$.
|
||||
By \ihref{sub:exercise-1.2.10a-ih}, $\Sigma_1$ has an independent
|
||||
equivalent subset $\Sigma_2$.
|
||||
|
||||
Now let $\phi$ be an arbitrary wff.
|
||||
Then
|
||||
\begin{align*}
|
||||
\Sigma_2 \vDash \phi
|
||||
& \Rightarrow \Sigma_1 \vDash \phi
|
||||
& \text{def'n of equivalent} \\
|
||||
& \Rightarrow \Sigma_1; \sigma \vDash \phi
|
||||
& \sigma \text{ is redundant} \\
|
||||
& \Rightarrow \Sigma \vDash \phi.
|
||||
\end{align*}
|
||||
Likewise,
|
||||
\begin{align*}
|
||||
\Sigma \vDash \phi
|
||||
& \Rightarrow \Sigma_1; \sigma \vDash \phi \\
|
||||
& \Rightarrow \Sigma_1 \vDash \phi
|
||||
& \sigma \text{ is redundant} \\
|
||||
& \Rightarrow \Sigma_2 \vDash \phi.
|
||||
& \text{def'n of equivalent}
|
||||
\end{align*}
|
||||
Thus $\Sigma_2$ is an independent equivalent subset of $\Sigma$.
|
||||
|
||||
\subparagraph{Subconclusion}%
|
||||
|
||||
The above two cases are exhaustive.
|
||||
Hence $P(n + 1)$ holds true.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
By induction, it follows $P(n)$ holds true for all $n \geq 0$.
|
||||
That is, every set of wffs equinumerous to a natural number has an
|
||||
independent equivalent subset.
|
||||
In other words, every finite set of wffs has an independent equivalent
|
||||
subset.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\sorry{Exercise 1.2.10b}}%
|
||||
\subsubsection{\unverified{Exercise 1.2.10b}}%
|
||||
\hyperlabel{ssub:exercise-1.2.10b}
|
||||
|
||||
An infinite set need not have an independent equivalent subset.
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
Let $$S = \{A_1 \land \cdots \land A_n \mid n \in \omega\}$$ be an infinite
|
||||
set of wffs.
|
||||
For the sake of contradiction, suppose $S$ has an independent equivalent
|
||||
subset $S'$.
|
||||
There are two cases to consider:
|
||||
|
||||
\paragraph{Case 1}%
|
||||
|
||||
Suppose $S' = \emptyset$.
|
||||
Then it trivally follows $S'$ is not equivalent to $S$, a contradiction.
|
||||
|
||||
\paragraph{Case 1}%
|
||||
|
||||
Suppose $S' \neq \emptyset$.
|
||||
By the \nameref{S:sub:well-ordering-natural-numbers}, there exists a least
|
||||
$n \in \mathbb{N}$ such that $\phi = A_1 \land \cdots \land A_n$ is in
|
||||
$S'$.
|
||||
It cannot be that another element of $S'$ exists since such an element
|
||||
would tautologically imply $\phi$, contradicting independence.
|
||||
Thus $S' = \{\phi\}$.
|
||||
But $\{\phi\}$ cannot be equivalent to $S$ since it has no information
|
||||
about sentence symbol e.g. $A_{n+1}$, another contradiction.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
The above two cases are exhaustive and both yield contradictions.
|
||||
It must be that $S$ does not have an independent equivalent subset.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsubsection{\sorry{Exercise 1.2.10c}}%
|
||||
\hyperlabel{ssub:exercise-1.2.10c}
|
||||
|
||||
Let $\Sigma = \{\sigma_0, \sigma_1, \ldots\}$; show that there is an
|
||||
independent equivalent set $\Sigma'$.
|
||||
(By part (b), we cannot hope to have $\Sigma' \subseteq \Sigma$ in general.)
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.2.11}}%
|
||||
\subsection{\unverified{Exercise 1.2.11}}%
|
||||
\hyperlabel{sub:exercise-1.2.11}
|
||||
|
||||
Show that a truth assignment $v$ satisfies the wff
|
||||
|
@ -1636,10 +1730,88 @@
|
|||
parentheses is not crucial.)
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
Define $\sigma_n$ recursively as follows:
|
||||
$\sigma_0 = (A_1 \Leftrightarrow A_2)$ and
|
||||
$\sigma_{n+1} = (\sigma_n \Leftrightarrow A_{n+3})$.
|
||||
For natural number $n$, let $P(n)$ be the statement:
|
||||
\begin{induction}
|
||||
\hyperlabel{sub:exercise-1.2.11-ih}
|
||||
Truth assignment $v$ satisfies $\sigma_n$ if and only if $v(A_i) = F$
|
||||
for an even number of $i$'s, $1 \leq i \leq n + 2$.
|
||||
\end{induction}
|
||||
\noindent
|
||||
We proceed by induction on $n$.
|
||||
|
||||
\paragraph{Base Case}%
|
||||
|
||||
Let $n = 0$.
|
||||
Then $\sigma_n = \sigma_0 = (A_1 \Leftrightarrow A_2)$.
|
||||
We proceed by truth table:
|
||||
$$\begin{array}{s|e|s}
|
||||
(A_1 & \Leftrightarrow & A_2) \\
|
||||
\hline
|
||||
T & T & T \\
|
||||
T & F & F \\
|
||||
F & F & T \\
|
||||
F & T & F
|
||||
\end{array}$$
|
||||
Here we see $A_1 \Leftrightarrow A_2$ is true if and only if both $A_1$
|
||||
and $A_2$ are true or neither $A_1$ nor $A_2$ are true.
|
||||
Thus $P(0)$ holds true.
|
||||
|
||||
\paragraph{Inductive Step}%
|
||||
|
||||
Suppose $P(n)$ holds true for some $n \geq 0$.
|
||||
Consider now $$\sigma_{n+1} = (\sigma_k \Leftrightarrow A_{n+3}).$$
|
||||
Let $v$ be a truth assignment for $A_1, \ldots, A_{n+3}$.
|
||||
There are two cases to consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
Suppose $v(A_i) = F$ for an even number of $i$'s, $1 \leq i \leq n + 2$.
|
||||
By \ihref{sub:exercise-1.2.11-ih}, $v$ satisfies $\sigma_n$.
|
||||
We now have the following truth table:
|
||||
$$\begin{array}{s|e|s}
|
||||
(\sigma_n & \Leftrightarrow & A_{n+3}) \\
|
||||
\hline
|
||||
T & T & T \\
|
||||
T & F & F \\
|
||||
\end{array}$$
|
||||
In this case, it follows $v$ satisfies $\sigma_{n+1}$ if and only if
|
||||
$v(A_i) = F$ for an even number of $i$'s, $1 \leq i \leq n + 3$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
Suppose $v(A_i) = F$ for an odd number of $i$'s, $1 \leq i \leq n + 2$.
|
||||
By \ihref{sub:exercise-1.2.11-ih}, $v$ does not satisfy $\sigma_n$.
|
||||
We now have the following truth table:
|
||||
$$\begin{array}{s|e|s}
|
||||
(\sigma_n & \Leftrightarrow & A_{n+3}) \\
|
||||
\hline
|
||||
F & F & T \\
|
||||
F & T & F \\
|
||||
\end{array}$$
|
||||
In this case, it follows $v$ satisfies $\sigma_{n+1}$ if and only if
|
||||
$v(A_i) = F$ for an even number of $i$'s, $1 \leq i \leq n + 3$.
|
||||
|
||||
\subparagraph{Subconclusion}%
|
||||
|
||||
The above two cases are exhaustive.
|
||||
Hence $P(n + 1)$ holds true.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
By induction, it follows $P(n)$ holds true for all $n \geq 0$.
|
||||
That is, truth assignment $v$ satisfies
|
||||
$$(\cdots (A_1 \Leftrightarrow A_2)
|
||||
\Leftrightarrow \cdots \Leftrightarrow A_n)$$
|
||||
if and only if $v(A_i) = F$ for an even number of $i$'s,
|
||||
$1 \leq i \leq n$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.2.12}}%
|
||||
\subsection{\unverified{Exercise 1.2.12}}%
|
||||
\hyperlabel{sub:exercise-1.2.12}
|
||||
|
||||
There are three suspects for a murder: Adams, Brown, and Clark.
|
||||
|
@ -1647,17 +1819,20 @@
|
|||
But Clark hated him."
|
||||
Brown states "I didn't do it. I didn't even know the guy. Besides I was out of
|
||||
town all that week."
|
||||
Clark says "I didn't do it. I saw both ADams and Brown downtown with the
|
||||
Clark says "I didn't do it. I saw both Adams and Brown downtown with the
|
||||
victim that day; one of them must have done it."
|
||||
Assume that the two innocent men are telling the truth, but that the guilty
|
||||
man might not be.
|
||||
Who did it?
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
It must be that Brown is the guilty one.
|
||||
Adam claims the victim was an old acquaintance of Brown's.
|
||||
Clark claims Brown was downtown with the victim that day.
|
||||
Brown's testimony conflicts with both of these statements.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.2.13}}%
|
||||
\subsection{\unverified{Exercise 1.2.13}}%
|
||||
\hyperlabel{sub:exercise-1.2.13}
|
||||
|
||||
An advertisement for a tennis magazine states, "If I'm not playing tennis,
|
||||
|
@ -1670,7 +1845,17 @@
|
|||
truth assignments.)
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Let $P$ denote playing tennis, $W$ denote watching tennis, and $R$ denote
|
||||
reading about tennis.
|
||||
These statements can be translated as:
|
||||
\begin{enumerate}[(a)]
|
||||
\item $\neg P \Rightarrow W$.
|
||||
\item $\neg W \Rightarrow R$.
|
||||
\end{enumerate}
|
||||
Thus either the speaker is playing tennis, or, if not, he is watching
|
||||
tennis.
|
||||
Since we assume the speaker cannot do more than one of these activities at
|
||||
a time, reading is never a possibility.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.2.14}}%
|
||||
|
@ -1684,10 +1869,11 @@
|
|||
\nameref{sub:induction-principle-1} to show that $\bar{v}_1 = \bar{v}_2$.
|
||||
|
||||
\begin{proof}
|
||||
The conditions 0-5 can be found at \nameref{ref:truth-assignment}.
|
||||
TODO
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.2.15}}%
|
||||
\subsection{\verified{Exercise 1.2.15}}%
|
||||
\hyperlabel{sub:exercise-1.2.15}
|
||||
|
||||
Of the following three formulas, which tautologically implies which?
|
||||
|
@ -1697,8 +1883,51 @@
|
|||
\item $(((\neg A) \lor B) \land (A \lor (\neg B)))$
|
||||
\end{enumerate}
|
||||
|
||||
\code{Bookshelf/Enderton/Logic/Chapter\_1}
|
||||
{Enderton.Logic.Chapter\_1.exercise\_1\_2\_15\_i}
|
||||
|
||||
\code{Bookshelf/Enderton/Logic/Chapter\_1}
|
||||
{Enderton.Logic.Chapter\_1.exercise\_1\_2\_15\_ii}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
All three are tautologically equivalent.
|
||||
We prove that (i) (a) is tautologically equivalent to (b) and (ii) (a) is
|
||||
tautologically equivalent to (c). It then immediately follows that (b) is
|
||||
tautologically equivalent to (c).
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
By \nameref{sub:exercise-1.2.4}, $(a) \vDash\Dashv (b)$ if and only if
|
||||
$\vDash ((a) \Leftrightarrow (b))$.
|
||||
We now construct the corresponding truth table:
|
||||
$$\begin{array}{s|c|s|e|c|s|c|s|c|c|s|c|s}
|
||||
(A & \Leftrightarrow & B) & \Leftrightarrow &
|
||||
(\neg & ((A & \Rightarrow & B) &
|
||||
\Rightarrow & (\neg & (B & \Rightarrow & A)))) \\
|
||||
\hline
|
||||
T & T & T & T & T & T & T & T & F & F & T & T & T \\
|
||||
T & F & F & T & F & T & F & F & T & F & F & T & T \\
|
||||
F & F & T & T & F & F & T & T & T & T & T & F & F \\
|
||||
F & T & F & T & T & F & T & F & F & F & F & T & F
|
||||
\end{array}$$
|
||||
Therefore (a) and (b) are tautologically equivalent.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By \nameref{sub:exercise-1.2.4}, $(a) \vDash\Dashv (c)$ if and only if
|
||||
$\vDash ((a) \Leftrightarrow (c))$.
|
||||
We now construct the corresponding truth table:
|
||||
$$\begin{array}{s|c|s|e|c|s|c|s|c|s|c|c|s}
|
||||
(A & \Leftrightarrow & B) & \Leftrightarrow &
|
||||
(((\neg & A) & \lor & B) & \land & (A & \lor & (\neg & B))) \\
|
||||
\hline
|
||||
T & T & T & T & F & T & T & T & T & T & T & F & T \\
|
||||
T & F & F & T & F & T & F & F & F & T & T & T & F \\
|
||||
F & F & T & T & T & F & T & T & F & F & F & F & T \\
|
||||
F & T & F & T & T & F & T & F & T & F & T & T & F
|
||||
\end{array}$$
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -519,4 +519,20 @@ theorem exercise_1_2_6b
|
|||
: (False ∨ True) ∧ ¬ False := by
|
||||
simp
|
||||
|
||||
/-! #### Exercise 1.2.15
|
||||
|
||||
Of the following three formulas, which tautologically implies which?
|
||||
(a) `(A ↔ B)`
|
||||
(b) `(¬((A → B) →(¬(B → A))))`
|
||||
(c) `(((¬ A) ∨ B) ∧ (A ∨ (¬ B)))`
|
||||
-/
|
||||
|
||||
theorem exercise_1_2_15_i (A B : Prop)
|
||||
: (A ↔ B) ↔ (¬((A → B) → (¬(B → A)))) := by
|
||||
tauto
|
||||
|
||||
theorem exercise_1_2_15_ii (A B : Prop)
|
||||
: (A ↔ B) ↔ (((¬ A) ∨ B) ∧ (A ∨ (¬ B))) := by
|
||||
tauto
|
||||
|
||||
end Enderton.Logic.Chapter_1
|
||||
|
|
Loading…
Reference in New Issue