Enderton (logic). Finish all but exercise 1.2.14.
parent
c458eca8ae
commit
6c5fbf825a
|
@ -118,6 +118,9 @@
|
||||||
a function $$v \colon \mathcal{S} \rightarrow \{F, T\}$$ assigning either
|
a function $$v \colon \mathcal{S} \rightarrow \{F, T\}$$ assigning either
|
||||||
$T$ or $F$ to each symbol in $\mathcal{S}$.
|
$T$ or $F$ to each symbol in $\mathcal{S}$.
|
||||||
|
|
||||||
|
\suitdivider
|
||||||
|
|
||||||
|
\noindent
|
||||||
Let $\bar{\mathcal{S}}$ be the set of \nameref{ref:well-formed-formula}s that
|
Let $\bar{\mathcal{S}}$ be the set of \nameref{ref:well-formed-formula}s that
|
||||||
can be built up from $\mathcal{S}$ by the five
|
can be built up from $\mathcal{S}$ by the five
|
||||||
\nameref{ref:formula-building-operations}.
|
\nameref{ref:formula-building-operations}.
|
||||||
|
@ -246,6 +249,7 @@
|
||||||
{Enderton.Logic.Chapter\_1.Wff.rec}
|
{Enderton.Logic.Chapter\_1.Wff.rec}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
We note every well-formed formula can be characterized by a
|
We note every well-formed formula can be characterized by a
|
||||||
\nameref{ref:construction-sequence}.
|
\nameref{ref:construction-sequence}.
|
||||||
For natural number $m$, let $P(m)$ be the statement:
|
For natural number $m$, let $P(m)$ be the statement:
|
||||||
|
@ -1586,7 +1590,7 @@
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.10}}%
|
\subsection{\unverified{Exercise 1.2.10}}%
|
||||||
\hyperlabel{sub:exercise-1.2.10}
|
\hyperlabel{sub:exercise-1.2.10}
|
||||||
|
|
||||||
Say that a set $\Sigma_1$ of wffs is \textit{equivalent} to a set $\Sigma_2$
|
Say that a set $\Sigma_1$ of wffs is \textit{equivalent} to a set $\Sigma_2$
|
||||||
|
@ -1596,36 +1600,126 @@
|
||||||
tautologically implied by the remaining members in $\Sigma$.
|
tautologically implied by the remaining members in $\Sigma$.
|
||||||
Show that the following hold.
|
Show that the following hold.
|
||||||
|
|
||||||
\subsubsection{\sorry{Exercise 1.2.10a}}%
|
\subsubsection{\unverified{Exercise 1.2.10a}}%
|
||||||
\hyperlabel{ssub:exercise-1.2.10a}
|
\hyperlabel{ssub:exercise-1.2.10a}
|
||||||
|
|
||||||
A finite set of wffs has an independent equivalent subset.
|
A finite set of wffs has an independent equivalent subset.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
For natural number $n$, let $P(n)$ be the statement:
|
||||||
|
\begin{induction}
|
||||||
|
\hyperlabel{sub:exercise-1.2.10a-ih}
|
||||||
|
A set of wffs \nameref{S:ref:equinumerous} to $n$ has an independent
|
||||||
|
equivalent subset.
|
||||||
|
\end{induction}
|
||||||
|
\noindent
|
||||||
|
We proceed by induction on $n$.
|
||||||
|
|
||||||
|
\paragraph{Base Case}%
|
||||||
|
|
||||||
|
Consider a finite set of wffs equinumerous to $0$.
|
||||||
|
This is simply the empty set.
|
||||||
|
It is vacuously true that $\emptyset$ is independent.
|
||||||
|
Thus $\emptyset \subseteq \emptyset$ is an independent equivalent subset
|
||||||
|
meaning $P(0)$ is true.
|
||||||
|
|
||||||
|
\paragraph{Inductive Step}%
|
||||||
|
|
||||||
|
Suppose $P(n)$ holds true for some $n \geq 0$.
|
||||||
|
That is, every finite set of wffs equinumerous to $n$ has an independent
|
||||||
|
equivalent subset.
|
||||||
|
Consider now set $\Sigma$ of wffs equinumerous to $n + 1$.
|
||||||
|
There are two possibilities to consider:
|
||||||
|
|
||||||
|
\subparagraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $\Sigma$ is independent.
|
||||||
|
Then $\Sigma \subseteq \Sigma$ is an independent equivalent subset.
|
||||||
|
|
||||||
|
\subparagraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $\Sigma$ is not independent.
|
||||||
|
Then there exists some $\sigma \in \Sigma$ such that $\sigma$ is
|
||||||
|
tautologically implied by the remaining members of $\Sigma$.
|
||||||
|
Let $\Sigma_1 = \Sigma - \{\sigma\}$.
|
||||||
|
By \ihref{sub:exercise-1.2.10a-ih}, $\Sigma_1$ has an independent
|
||||||
|
equivalent subset $\Sigma_2$.
|
||||||
|
|
||||||
|
Now let $\phi$ be an arbitrary wff.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
\Sigma_2 \vDash \phi
|
||||||
|
& \Rightarrow \Sigma_1 \vDash \phi
|
||||||
|
& \text{def'n of equivalent} \\
|
||||||
|
& \Rightarrow \Sigma_1; \sigma \vDash \phi
|
||||||
|
& \sigma \text{ is redundant} \\
|
||||||
|
& \Rightarrow \Sigma \vDash \phi.
|
||||||
|
\end{align*}
|
||||||
|
Likewise,
|
||||||
|
\begin{align*}
|
||||||
|
\Sigma \vDash \phi
|
||||||
|
& \Rightarrow \Sigma_1; \sigma \vDash \phi \\
|
||||||
|
& \Rightarrow \Sigma_1 \vDash \phi
|
||||||
|
& \sigma \text{ is redundant} \\
|
||||||
|
& \Rightarrow \Sigma_2 \vDash \phi.
|
||||||
|
& \text{def'n of equivalent}
|
||||||
|
\end{align*}
|
||||||
|
Thus $\Sigma_2$ is an independent equivalent subset of $\Sigma$.
|
||||||
|
|
||||||
|
\subparagraph{Subconclusion}%
|
||||||
|
|
||||||
|
The above two cases are exhaustive.
|
||||||
|
Hence $P(n + 1)$ holds true.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
By induction, it follows $P(n)$ holds true for all $n \geq 0$.
|
||||||
|
That is, every set of wffs equinumerous to a natural number has an
|
||||||
|
independent equivalent subset.
|
||||||
|
In other words, every finite set of wffs has an independent equivalent
|
||||||
|
subset.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsubsection{\sorry{Exercise 1.2.10b}}%
|
\subsubsection{\unverified{Exercise 1.2.10b}}%
|
||||||
\hyperlabel{ssub:exercise-1.2.10b}
|
\hyperlabel{ssub:exercise-1.2.10b}
|
||||||
|
|
||||||
An infinite set need not have an independent equivalent subset.
|
An infinite set need not have an independent equivalent subset.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Let $$S = \{A_1 \land \cdots \land A_n \mid n \in \omega\}$$ be an infinite
|
||||||
|
set of wffs.
|
||||||
|
For the sake of contradiction, suppose $S$ has an independent equivalent
|
||||||
|
subset $S'$.
|
||||||
|
There are two cases to consider:
|
||||||
|
|
||||||
|
\paragraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $S' = \emptyset$.
|
||||||
|
Then it trivally follows $S'$ is not equivalent to $S$, a contradiction.
|
||||||
|
|
||||||
|
\paragraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $S' \neq \emptyset$.
|
||||||
|
By the \nameref{S:sub:well-ordering-natural-numbers}, there exists a least
|
||||||
|
$n \in \mathbb{N}$ such that $\phi = A_1 \land \cdots \land A_n$ is in
|
||||||
|
$S'$.
|
||||||
|
It cannot be that another element of $S'$ exists since such an element
|
||||||
|
would tautologically imply $\phi$, contradicting independence.
|
||||||
|
Thus $S' = \{\phi\}$.
|
||||||
|
But $\{\phi\}$ cannot be equivalent to $S$ since it has no information
|
||||||
|
about sentence symbol e.g. $A_{n+1}$, another contradiction.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
The above two cases are exhaustive and both yield contradictions.
|
||||||
|
It must be that $S$ does not have an independent equivalent subset.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsubsection{\sorry{Exercise 1.2.10c}}%
|
\subsection{\unverified{Exercise 1.2.11}}%
|
||||||
\hyperlabel{ssub:exercise-1.2.10c}
|
|
||||||
|
|
||||||
Let $\Sigma = \{\sigma_0, \sigma_1, \ldots\}$; show that there is an
|
|
||||||
independent equivalent set $\Sigma'$.
|
|
||||||
(By part (b), we cannot hope to have $\Sigma' \subseteq \Sigma$ in general.)
|
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
TODO
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.11}}%
|
|
||||||
\hyperlabel{sub:exercise-1.2.11}
|
\hyperlabel{sub:exercise-1.2.11}
|
||||||
|
|
||||||
Show that a truth assignment $v$ satisfies the wff
|
Show that a truth assignment $v$ satisfies the wff
|
||||||
|
@ -1636,10 +1730,88 @@
|
||||||
parentheses is not crucial.)
|
parentheses is not crucial.)
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Define $\sigma_n$ recursively as follows:
|
||||||
|
$\sigma_0 = (A_1 \Leftrightarrow A_2)$ and
|
||||||
|
$\sigma_{n+1} = (\sigma_n \Leftrightarrow A_{n+3})$.
|
||||||
|
For natural number $n$, let $P(n)$ be the statement:
|
||||||
|
\begin{induction}
|
||||||
|
\hyperlabel{sub:exercise-1.2.11-ih}
|
||||||
|
Truth assignment $v$ satisfies $\sigma_n$ if and only if $v(A_i) = F$
|
||||||
|
for an even number of $i$'s, $1 \leq i \leq n + 2$.
|
||||||
|
\end{induction}
|
||||||
|
\noindent
|
||||||
|
We proceed by induction on $n$.
|
||||||
|
|
||||||
|
\paragraph{Base Case}%
|
||||||
|
|
||||||
|
Let $n = 0$.
|
||||||
|
Then $\sigma_n = \sigma_0 = (A_1 \Leftrightarrow A_2)$.
|
||||||
|
We proceed by truth table:
|
||||||
|
$$\begin{array}{s|e|s}
|
||||||
|
(A_1 & \Leftrightarrow & A_2) \\
|
||||||
|
\hline
|
||||||
|
T & T & T \\
|
||||||
|
T & F & F \\
|
||||||
|
F & F & T \\
|
||||||
|
F & T & F
|
||||||
|
\end{array}$$
|
||||||
|
Here we see $A_1 \Leftrightarrow A_2$ is true if and only if both $A_1$
|
||||||
|
and $A_2$ are true or neither $A_1$ nor $A_2$ are true.
|
||||||
|
Thus $P(0)$ holds true.
|
||||||
|
|
||||||
|
\paragraph{Inductive Step}%
|
||||||
|
|
||||||
|
Suppose $P(n)$ holds true for some $n \geq 0$.
|
||||||
|
Consider now $$\sigma_{n+1} = (\sigma_k \Leftrightarrow A_{n+3}).$$
|
||||||
|
Let $v$ be a truth assignment for $A_1, \ldots, A_{n+3}$.
|
||||||
|
There are two cases to consider:
|
||||||
|
|
||||||
|
\subparagraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $v(A_i) = F$ for an even number of $i$'s, $1 \leq i \leq n + 2$.
|
||||||
|
By \ihref{sub:exercise-1.2.11-ih}, $v$ satisfies $\sigma_n$.
|
||||||
|
We now have the following truth table:
|
||||||
|
$$\begin{array}{s|e|s}
|
||||||
|
(\sigma_n & \Leftrightarrow & A_{n+3}) \\
|
||||||
|
\hline
|
||||||
|
T & T & T \\
|
||||||
|
T & F & F \\
|
||||||
|
\end{array}$$
|
||||||
|
In this case, it follows $v$ satisfies $\sigma_{n+1}$ if and only if
|
||||||
|
$v(A_i) = F$ for an even number of $i$'s, $1 \leq i \leq n + 3$.
|
||||||
|
|
||||||
|
\subparagraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $v(A_i) = F$ for an odd number of $i$'s, $1 \leq i \leq n + 2$.
|
||||||
|
By \ihref{sub:exercise-1.2.11-ih}, $v$ does not satisfy $\sigma_n$.
|
||||||
|
We now have the following truth table:
|
||||||
|
$$\begin{array}{s|e|s}
|
||||||
|
(\sigma_n & \Leftrightarrow & A_{n+3}) \\
|
||||||
|
\hline
|
||||||
|
F & F & T \\
|
||||||
|
F & T & F \\
|
||||||
|
\end{array}$$
|
||||||
|
In this case, it follows $v$ satisfies $\sigma_{n+1}$ if and only if
|
||||||
|
$v(A_i) = F$ for an even number of $i$'s, $1 \leq i \leq n + 3$.
|
||||||
|
|
||||||
|
\subparagraph{Subconclusion}%
|
||||||
|
|
||||||
|
The above two cases are exhaustive.
|
||||||
|
Hence $P(n + 1)$ holds true.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
By induction, it follows $P(n)$ holds true for all $n \geq 0$.
|
||||||
|
That is, truth assignment $v$ satisfies
|
||||||
|
$$(\cdots (A_1 \Leftrightarrow A_2)
|
||||||
|
\Leftrightarrow \cdots \Leftrightarrow A_n)$$
|
||||||
|
if and only if $v(A_i) = F$ for an even number of $i$'s,
|
||||||
|
$1 \leq i \leq n$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.12}}%
|
\subsection{\unverified{Exercise 1.2.12}}%
|
||||||
\hyperlabel{sub:exercise-1.2.12}
|
\hyperlabel{sub:exercise-1.2.12}
|
||||||
|
|
||||||
There are three suspects for a murder: Adams, Brown, and Clark.
|
There are three suspects for a murder: Adams, Brown, and Clark.
|
||||||
|
@ -1647,17 +1819,20 @@
|
||||||
But Clark hated him."
|
But Clark hated him."
|
||||||
Brown states "I didn't do it. I didn't even know the guy. Besides I was out of
|
Brown states "I didn't do it. I didn't even know the guy. Besides I was out of
|
||||||
town all that week."
|
town all that week."
|
||||||
Clark says "I didn't do it. I saw both ADams and Brown downtown with the
|
Clark says "I didn't do it. I saw both Adams and Brown downtown with the
|
||||||
victim that day; one of them must have done it."
|
victim that day; one of them must have done it."
|
||||||
Assume that the two innocent men are telling the truth, but that the guilty
|
Assume that the two innocent men are telling the truth, but that the guilty
|
||||||
man might not be.
|
man might not be.
|
||||||
Who did it?
|
Who did it?
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
It must be that Brown is the guilty one.
|
||||||
|
Adam claims the victim was an old acquaintance of Brown's.
|
||||||
|
Clark claims Brown was downtown with the victim that day.
|
||||||
|
Brown's testimony conflicts with both of these statements.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.13}}%
|
\subsection{\unverified{Exercise 1.2.13}}%
|
||||||
\hyperlabel{sub:exercise-1.2.13}
|
\hyperlabel{sub:exercise-1.2.13}
|
||||||
|
|
||||||
An advertisement for a tennis magazine states, "If I'm not playing tennis,
|
An advertisement for a tennis magazine states, "If I'm not playing tennis,
|
||||||
|
@ -1670,7 +1845,17 @@
|
||||||
truth assignments.)
|
truth assignments.)
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
Let $P$ denote playing tennis, $W$ denote watching tennis, and $R$ denote
|
||||||
|
reading about tennis.
|
||||||
|
These statements can be translated as:
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item $\neg P \Rightarrow W$.
|
||||||
|
\item $\neg W \Rightarrow R$.
|
||||||
|
\end{enumerate}
|
||||||
|
Thus either the speaker is playing tennis, or, if not, he is watching
|
||||||
|
tennis.
|
||||||
|
Since we assume the speaker cannot do more than one of these activities at
|
||||||
|
a time, reading is never a possibility.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.14}}%
|
\subsection{\sorry{Exercise 1.2.14}}%
|
||||||
|
@ -1684,10 +1869,11 @@
|
||||||
\nameref{sub:induction-principle-1} to show that $\bar{v}_1 = \bar{v}_2$.
|
\nameref{sub:induction-principle-1} to show that $\bar{v}_1 = \bar{v}_2$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
The conditions 0-5 can be found at \nameref{ref:truth-assignment}.
|
||||||
TODO
|
TODO
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 1.2.15}}%
|
\subsection{\verified{Exercise 1.2.15}}%
|
||||||
\hyperlabel{sub:exercise-1.2.15}
|
\hyperlabel{sub:exercise-1.2.15}
|
||||||
|
|
||||||
Of the following three formulas, which tautologically implies which?
|
Of the following three formulas, which tautologically implies which?
|
||||||
|
@ -1697,8 +1883,51 @@
|
||||||
\item $(((\neg A) \lor B) \land (A \lor (\neg B)))$
|
\item $(((\neg A) \lor B) \land (A \lor (\neg B)))$
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
\code{Bookshelf/Enderton/Logic/Chapter\_1}
|
||||||
|
{Enderton.Logic.Chapter\_1.exercise\_1\_2\_15\_i}
|
||||||
|
|
||||||
|
\code{Bookshelf/Enderton/Logic/Chapter\_1}
|
||||||
|
{Enderton.Logic.Chapter\_1.exercise\_1\_2\_15\_ii}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
All three are tautologically equivalent.
|
||||||
|
We prove that (i) (a) is tautologically equivalent to (b) and (ii) (a) is
|
||||||
|
tautologically equivalent to (c). It then immediately follows that (b) is
|
||||||
|
tautologically equivalent to (c).
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
|
||||||
|
By \nameref{sub:exercise-1.2.4}, $(a) \vDash\Dashv (b)$ if and only if
|
||||||
|
$\vDash ((a) \Leftrightarrow (b))$.
|
||||||
|
We now construct the corresponding truth table:
|
||||||
|
$$\begin{array}{s|c|s|e|c|s|c|s|c|c|s|c|s}
|
||||||
|
(A & \Leftrightarrow & B) & \Leftrightarrow &
|
||||||
|
(\neg & ((A & \Rightarrow & B) &
|
||||||
|
\Rightarrow & (\neg & (B & \Rightarrow & A)))) \\
|
||||||
|
\hline
|
||||||
|
T & T & T & T & T & T & T & T & F & F & T & T & T \\
|
||||||
|
T & F & F & T & F & T & F & F & T & F & F & T & T \\
|
||||||
|
F & F & T & T & F & F & T & T & T & T & T & F & F \\
|
||||||
|
F & T & F & T & T & F & T & F & F & F & F & T & F
|
||||||
|
\end{array}$$
|
||||||
|
Therefore (a) and (b) are tautologically equivalent.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
|
||||||
|
By \nameref{sub:exercise-1.2.4}, $(a) \vDash\Dashv (c)$ if and only if
|
||||||
|
$\vDash ((a) \Leftrightarrow (c))$.
|
||||||
|
We now construct the corresponding truth table:
|
||||||
|
$$\begin{array}{s|c|s|e|c|s|c|s|c|s|c|c|s}
|
||||||
|
(A & \Leftrightarrow & B) & \Leftrightarrow &
|
||||||
|
(((\neg & A) & \lor & B) & \land & (A & \lor & (\neg & B))) \\
|
||||||
|
\hline
|
||||||
|
T & T & T & T & F & T & T & T & T & T & T & F & T \\
|
||||||
|
T & F & F & T & F & T & F & F & F & T & T & T & F \\
|
||||||
|
F & F & T & T & T & F & T & T & F & F & F & F & T \\
|
||||||
|
F & T & F & T & T & F & T & F & T & F & T & T & F
|
||||||
|
\end{array}$$
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
@ -519,4 +519,20 @@ theorem exercise_1_2_6b
|
||||||
: (False ∨ True) ∧ ¬ False := by
|
: (False ∨ True) ∧ ¬ False := by
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
/-! #### Exercise 1.2.15
|
||||||
|
|
||||||
|
Of the following three formulas, which tautologically implies which?
|
||||||
|
(a) `(A ↔ B)`
|
||||||
|
(b) `(¬((A → B) →(¬(B → A))))`
|
||||||
|
(c) `(((¬ A) ∨ B) ∧ (A ∨ (¬ B)))`
|
||||||
|
-/
|
||||||
|
|
||||||
|
theorem exercise_1_2_15_i (A B : Prop)
|
||||||
|
: (A ↔ B) ↔ (¬((A → B) → (¬(B → A)))) := by
|
||||||
|
tauto
|
||||||
|
|
||||||
|
theorem exercise_1_2_15_ii (A B : Prop)
|
||||||
|
: (A ↔ B) ↔ (((¬ A) ∨ B) ∧ (A ∨ (¬ B))) := by
|
||||||
|
tauto
|
||||||
|
|
||||||
end Enderton.Logic.Chapter_1
|
end Enderton.Logic.Chapter_1
|
||||||
|
|
Loading…
Reference in New Issue