Enderton (set). Isomorphism from ℕ to peano systems.
parent
1e662bd1fe
commit
66ca483671
|
@ -6378,7 +6378,7 @@
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Theorem 4H}}%
|
||||
\subsection{\verified{Theorem 4H}}%
|
||||
\hyperlabel{sub:theorem-4h}
|
||||
|
||||
\begin{theorem}[4H]
|
||||
|
@ -6389,6 +6389,9 @@
|
|||
$$h(\sigma(n)) = S(h(n))$$ and the zero element $$h(0) = e.$$
|
||||
\end{theorem}
|
||||
|
||||
\code{Common/Set/Peano}
|
||||
{Peano.nat\_isomorphism}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $\langle N, S, e \rangle$ be a \nameref{ref:peano-system}.
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import Common.Logic.Basic
|
||||
import Common.Set.Basic
|
||||
import Common.Set.Peano
|
||||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.SetTheory.Ordinal.Basic
|
||||
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import Mathlib.Data.Rel
|
||||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.Tactic.LibrarySearch
|
||||
|
||||
/-! # Common.Set.Peano
|
||||
|
||||
|
@ -18,13 +19,16 @@ met:
|
|||
3. Every subset `A` of `N` containing `e` and closed under `S` is `N` itself.
|
||||
-/
|
||||
class System (N : Set α) (S : α → α) (e : α) where
|
||||
maps_to : Set.MapsTo S N N
|
||||
mem : e ∈ N
|
||||
zero_range : e ∉ Set.range S
|
||||
injective : Function.Injective S
|
||||
induction : ∀ A, A ⊆ N ∧ e ∈ A ∧ (∀ a ∈ A, S a ∈ A) → A = N
|
||||
|
||||
instance : System (N := @Set.univ ℕ) (S := Nat.succ) (e := 0) where
|
||||
zero_range := by
|
||||
simp
|
||||
maps_to := by simp
|
||||
mem := by simp
|
||||
zero_range := by simp
|
||||
injective := by
|
||||
intro x₁ x₂ h
|
||||
injection h
|
||||
|
@ -39,4 +43,105 @@ instance : System (N := @Set.univ ℕ) (S := Nat.succ) (e := 0) where
|
|||
refine h.right.right n (ih ?_)
|
||||
simp
|
||||
|
||||
/--
|
||||
The unique (by virtue of the Recursion Theorem for `ω`) function that maps the
|
||||
natural numbers to an arbitrary Peano system.
|
||||
-/
|
||||
def of_nat {e : α} [h : System N S e] : Nat → α
|
||||
| 0 => e
|
||||
| n + 1 => S (@of_nat _ _ _ _ h n)
|
||||
|
||||
/--
|
||||
The `of_nat` function maps all natural numbers to the set `N` defined in the
|
||||
provided Peano system.
|
||||
-/
|
||||
theorem nat_maps_to [h : System N S e]
|
||||
: Set.MapsTo (@of_nat _ _ _ _ h) Set.univ N := by
|
||||
unfold Set.MapsTo
|
||||
intro x hx
|
||||
unfold of_nat
|
||||
induction x with
|
||||
| zero => exact h.mem
|
||||
| succ x ih =>
|
||||
simp only
|
||||
by_cases hx' : x = 0
|
||||
· rw [hx']
|
||||
unfold of_nat
|
||||
exact h.maps_to h.mem
|
||||
· have ⟨p, hp⟩ := Nat.exists_eq_succ_of_ne_zero hx'
|
||||
rw [hp] at ih ⊢
|
||||
simp only [Set.mem_univ, forall_true_left] at ih
|
||||
exact h.maps_to ih
|
||||
|
||||
/--
|
||||
Let `⟨N, S, e⟩` be a Peano system. Then `⟨ω, σ, 0⟩` is isomorphic to
|
||||
`⟨N, S, e⟩`, i.e., there is a function `h` mapping `ω` one-to-one onto `N` in a
|
||||
way that preserves the successor operation
|
||||
```
|
||||
h(σ(n)) = S(h(n))
|
||||
```
|
||||
and the zero element
|
||||
```
|
||||
h(0) = e.
|
||||
```
|
||||
-/
|
||||
theorem nat_isomorphism [h : System N S e]
|
||||
: let n2p := @of_nat _ _ _ _ h
|
||||
Set.BijOn n2p Set.univ N ∧
|
||||
(∀ n : ℕ, n2p n.succ = S (n2p n)) ∧ n2p 0 = e := by
|
||||
let n2p := @of_nat _ _ _ _ h
|
||||
refine ⟨⟨nat_maps_to, ?_, ?_⟩, ?_, rfl⟩
|
||||
· -- Prove `of_nat` is one-to-one.
|
||||
suffices ∀ n : ℕ, ∀ m, n2p m = n2p n → m = n by
|
||||
unfold Set.InjOn
|
||||
intro m _ n _
|
||||
exact this n m
|
||||
intro n
|
||||
induction n with
|
||||
| zero =>
|
||||
intro m hm
|
||||
by_contra nm
|
||||
have ⟨p, hp⟩ := Nat.exists_eq_succ_of_ne_zero nm
|
||||
rw [hp] at hm
|
||||
unfold of_nat at hm
|
||||
exact absurd ⟨n2p p, hm⟩ h.zero_range
|
||||
| succ n ih =>
|
||||
intro m hm
|
||||
by_cases nm : m = 0
|
||||
· rw [nm] at hm
|
||||
unfold of_nat at hm
|
||||
exact absurd ⟨n2p n, hm.symm⟩ h.zero_range
|
||||
· have ⟨p, hp⟩ := Nat.exists_eq_succ_of_ne_zero nm
|
||||
rw [hp] at hm
|
||||
unfold of_nat at hm
|
||||
have := h.injective hm
|
||||
rwa [← ih p this]
|
||||
· -- Prove `of_nat` is onto.
|
||||
suffices e ∈ Set.range n2p ∧ (∀ y, y ∈ Set.range n2p → S y ∈ Set.range n2p) by
|
||||
unfold Set.SurjOn
|
||||
simp only [Set.image_univ]
|
||||
have hN : Set.range n2p = N := by
|
||||
refine h.induction (Set.range n2p) ⟨?_, this⟩
|
||||
show ∀ t, t ∈ Set.range n2p → t ∈ N
|
||||
intro t ht
|
||||
unfold Set.range at ht
|
||||
simp only [Set.mem_setOf_eq] at ht
|
||||
have ⟨y, hy⟩ := ht
|
||||
rw [← hy]
|
||||
exact nat_maps_to (by simp)
|
||||
exact Eq.subset (id (Eq.symm hN))
|
||||
refine ⟨?_, ?_⟩
|
||||
· unfold Set.range
|
||||
simp only [Set.mem_setOf_eq]
|
||||
exact ⟨0, rfl⟩
|
||||
· intro y hy
|
||||
have ⟨n, hn⟩ := hy
|
||||
refine ⟨n + 1, ?_⟩
|
||||
unfold of_nat
|
||||
simp only [Nat.add_eq, Nat.add_zero]
|
||||
dsimp only at hn
|
||||
rw [hn]
|
||||
· intro _
|
||||
conv => left; unfold of_nat
|
||||
|
||||
end Peano
|
Loading…
Reference in New Issue