Enderton. Axiom of choice; fix theorem 3J.

finite-set-exercises
Joshua Potter 2023-06-27 16:52:44 -06:00
parent 644660d197
commit 62f259358d
1 changed files with 104 additions and 36 deletions

View File

@ -24,6 +24,12 @@
\chapter{Reference}%
\label{chap:reference}
\section{\partial{Axiom of Choice, First Form}}%
\label{ref:axiom-of-choice-1}
For any relation $R$ there is a function $H \subseteq R$ with
$\dom{H} = \dom{R}$.
\section{\defined{Composition}}%
\label{ref:composition}
@ -3333,7 +3339,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
one-to-one.
\item There exists a function $H \colon B \rightarrow A$ (a "right inverse")
such that $F \circ H$ is the identity function $I_B$ on $B$ iff $F$ maps
$A$ onto $B$.
$A$ \textit{onto} $B$.
\end{enumerate}
\end{theorem}
@ -3349,55 +3355,117 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\subparagraph{($\Rightarrow$)}%
Suppose $G \colon B \rightarrow A$ is a function satisfying
$G \circ F = I_A$.
To prove function $F$ is one-to-one, it is sufficient to prove $F$ is
single-rooted.
Let $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
All that remains is to prove $F$ is single-valued.
Let $y \in \ran{F}$.
Then there there exists some $x_1 \in \dom{F}$ such that $F(x_1) = y$.
Suppose there exists another $x_2 \in \dom{F}$ such that $F(x_2) = y$.
Then $G(F(x_1)) = G(y) = G(F(x_2))$.
But $G \circ F = I_A$ so $x_1 = x_2$.
Thus, for all $y \in \ran{F}$, there exists only one $x$ such that
$\left< x, y \right> \in F$.
That is, $F$ is single-rooted as expected.
By definition of the \nameref{ref:range} of a function, there exists some
$x$ such that $\left< x, y \right> \in F$.
Suppose $x_1, x_2 \in \dom{F}$ such that
$\left< x_1, y \right>, \left< x_2, y \right> \in F$.
Then $F(x_1) = F(x_2) = y$.
Then $G(F(x_1)) = G(F(x_2))$ implies $I_A(x_1) = I_A(x_2)$.
Thus $x_1 = x_2$.
\subparagraph{($\Leftarrow$)}%
Suppose $F$ is one-to-one.
Then by \nameref{sub:lemma-1}, $F^{-1} \colon B \rightarrow A$ is also
one-to-one.
We show that $F^{-1} \circ F = I_A$.
Let $x \in \dom{F}$.
By \nameref{sub:theorem-3h}, $(F^{-1} \circ F)(x) = F^{-1}(F(x))$.
By \nameref{sub:theorem-3g}, $F^{-1}(F(x)) = x$.
Thus $F^{-1} \circ F = I_A$.
Let $F$ be one-to-one.
Since $A$ is nonempty, there exists some $a \in A$.
Let $G \colon B \rightarrow A$ be given by
$$G(y) = \begin{cases}
F^{-1}(y) & \text{if } y \in \ran{F} \\
a & \text{otherwise}.
\end{cases}$$
$G$ is a function by virtue of \nameref{sub:lemma-1} and choice of mapping
for all values $y \not\in \ran{F}$.
Furthermore, for all $x \in A$, $F(x) \in \ran{F}$.
Thus $(G \circ F)(x) = G(F(x)) = F^{-1}(F(x)) = x$ by
\nameref{sub:theorem-3g}.
\paragraph{(b)}%
We prove there exists a function $H \colon B \rightarrow A$ such that
$F \circ H = I_B$ if and only if $F$ maps $A$ onto $B$.
$F \circ H = I_A$ if and only if $F$ maps $A$ onto $B$.
\subparagraph{($\Rightarrow$)}%
Suppose $H \colon B \rightarrow A$ is a function satisfying
$F \circ H = I_B$.
To prove $F$ maps $A$ onto $B$, we must prove $\ran{F} = B$.
But for all $y \in B$, $F(H(y)) = y$.
Thus $y \in \ran{F}$ meaning $B \subseteq \ran{F}$.
Since $F$ maps $A$ into $B$ by hypothesis, $\ran{F} \subseteq B$.
Thus $\ran{F} = B$ as expected.
Suppose $H \colon B \rightarrow A$ such that $F \circ H = I_A$.
All that remains is to prove $\ran{F} = B$.
Note that $\ran{F} \subseteq B$ by hypothesis.
Let $y \in B$.
But $F(H(y)) = y$ meaning $y \in \ran{F}$.
Thus $B \subseteq \ran{F}$.
Since $\ran{F} \subseteq B$ and $B \subseteq \ran{F}$, $\ran{F} = B$.
\subparagraph{($\Leftarrow$)}%
Suppose $F$ maps $A$ onto $B$.
That is, $\ran{F} = B$.
We show that $F^{-1} \colon B \rightarrow A$ satisfies
$F \circ F^{-1} = I_B$.
Let $y \in \ran{F}$.
By \nameref{sub:theorem-3h}, $(F \circ F^{-1})(y) = F(F^{-1}(y))$.
By \nameref{sub:theorem-3g}, $F(F^{-1}(y)) = y$.
Thus $F \circ F^{-1} = I_B$.
Suppose $F$ maps $A$ \textit{onto} $B$.
By definition of maps onto, $\ran{F} = B$.
Then for all $y \in B$, there exists some $x \in A$ such that
$\left< x, y \right> \in F$.
Notice though that $F^{-1}[\{y\}]$ may not be a singleton set.
Then there is no obvious way to \textit{choose} an element from each
preimage to form a function.
By the \nameref{ref:axiom-of-choice-1}, there exists a function
$H \subseteq F^{-1}$ such that $\dom{H} = \dom{F^{-1}} = B$.
For all $y \in B$, $\left< y, H(y) \right> \in H \subseteq F^{-1}$
meaning $\left< H(y), y \right> \in F$.
Thus $F(H(y)) = y$ as expected.
\end{proof}
\subsection{\unverified{Theorem 3K}}%
\label{sub:theorem-3k}
\begin{theorem}[3K]
The following hold for any sets. ($F$ need not be a function.)
\begin{enumerate}[(a)]
\item The image of a union is the union of the images:
$$F[A \cup B] = F[A] \cup F[B] \quad\text{and}\quad
F\left[\bigcup{\mathscr{A}}\right] =
\bigcup\;\{F[A] \mid A \in \mathscr{A}\}.$$
\item The image of an intersection is included in the intersection of the
images:
$$F[A \cap B] \subseteq F[A] \cap F[B] \quad\text{and}\quad
F\left[\bigcap\mathscr{A}\right] \subseteq
\bigcap\;\{F[A] \mid A \in \mathscr{A}\}$$
for nonempty $\mathscr{A}$.
Equality holds if $F$ is single-rooted.
\item The image of a difference includes the difference of the images:
$$F[A] - F[B] \subseteq F[A - B].$$
Equality holds if $F$ is single-rooted.
\end{enumerate}
\end{theorem}
\begin{proof}
TODO
\end{proof}
\subsection{\unverified{Corollary 3L}}%
\label{sub:corollary-3l}
\begin{theorem}[3L]
For any function $G$ and sets $A$, $B$, and $\mathscr{A}$:
\begin{align*}
G^{-1}\left[\bigcup\mathscr{A}\right]
& = \bigcup\;\{G^{-1}[A] \mid A \in \mathscr{A}\}, \\
G^{-1}\left[\bigcap\mathscr{A}\right]
& = \bigcap\;\{G^{-1}[A] \mid A \in \mathscr{A}\}
\text{ for } \mathscr{A} \neq \emptyset, \\
G^{-1}[A - B]
& = G^{-1}[A] - G^{-1}[B].
\end{align*}
\end{theorem}
\begin{proof}
TODO
\end{proof}