Setup scaffolding for Fraleigh's "A First Course in Abstract Algebra".
parent
aa59363e74
commit
62077460b5
13
README.md
13
README.md
|
@ -1 +1,14 @@
|
|||
# bookshelf-lean
|
||||
|
||||
A collection of proofs and answers to exercises to books I'm studying.
|
||||
|
||||
## Updates
|
||||
|
||||
Lean's tooling is a fickle beast. If looking to update e.g. `Mathlib`, pin a new
|
||||
version to the `lake-manifest.json` file and start a new build from scratch:
|
||||
|
||||
```bash
|
||||
> lake update
|
||||
> lake clean
|
||||
> lake build
|
||||
```
|
||||
|
|
|
@ -40,11 +40,11 @@ theorem term_recursive_closed (seq : Arithmetic) (n : Nat)
|
|||
(by unfold termRecursive termClosed; norm_num)
|
||||
(fun n ih => calc
|
||||
termRecursive seq (Nat.succ n)
|
||||
= seq.Δ + seq.termRecursive n := rfl
|
||||
_ = seq.Δ + seq.termClosed n := by rw [ih]
|
||||
_ = seq.Δ + (seq.a₀ + seq.Δ * n) := rfl
|
||||
_ = seq.a₀ + seq.Δ * (n + 1) := by ring
|
||||
_ = termClosed seq (n + 1) := rfl)
|
||||
= seq.Δ + seq.termRecursive n := rfl
|
||||
_ = seq.Δ + seq.termClosed n := by rw [ih]
|
||||
_ = seq.Δ + (seq.a₀ + seq.Δ * n) := rfl
|
||||
_ = seq.a₀ + seq.Δ * (n + 1) := by ring
|
||||
_ = termClosed seq (n + 1) := rfl)
|
||||
|
||||
/--[1]
|
||||
Summation of the first `n` terms of an arithmetic sequence.
|
||||
|
@ -64,10 +64,10 @@ theorem sum_closed_formula (seq : Arithmetic) (n : Nat)
|
|||
(by unfold sum termClosed; norm_num)
|
||||
(fun n ih => calc
|
||||
sum seq n.succ
|
||||
= seq.termClosed n + seq.sum n := rfl
|
||||
_ = seq.termClosed n + (n / 2 * (seq.a₀ + seq.termClosed (n - 1))) := by rw [ih]
|
||||
_ = seq.a₀ + seq.Δ * n + (n / 2 * (seq.a₀ + (seq.a₀ + seq.Δ * ↑(n - 1)))) := rfl
|
||||
-- TODO: To continue, need to find how to deal with division.
|
||||
_ = ↑(n + 1) / 2 * (seq.a₀ + seq.termClosed n) := by sorry)
|
||||
= seq.termClosed n + seq.sum n := rfl
|
||||
_ = seq.termClosed n + (n / 2 * (seq.a₀ + seq.termClosed (n - 1))) := by rw [ih]
|
||||
_ = seq.a₀ + seq.Δ * n + (n / 2 * (seq.a₀ + (seq.a₀ + seq.Δ * ↑(n - 1)))) := rfl
|
||||
-- TODO: To continue, need to find how to deal with division.
|
||||
_ = ↑(n + 1) / 2 * (seq.a₀ + seq.termClosed n) := by sorry)
|
||||
|
||||
end Arithmetic
|
|
@ -40,11 +40,11 @@ theorem term_recursive_closed (seq : Geometric) (n : Nat)
|
|||
(by unfold termClosed termRecursive; norm_num)
|
||||
(fun n ih => calc
|
||||
seq.termRecursive (n + 1)
|
||||
= seq.r * (seq.termRecursive n) := rfl
|
||||
_ = seq.r * (seq.termClosed n) := by rw [ih]
|
||||
_ = seq.r * (seq.a₀ * seq.r ^ n) := rfl
|
||||
_ = seq.a₀ * seq.r ^ (n + 1) := by ring
|
||||
_ = seq.termClosed (n + 1) := rfl)
|
||||
= seq.r * (seq.termRecursive n) := rfl
|
||||
_ = seq.r * (seq.termClosed n) := by rw [ih]
|
||||
_ = seq.r * (seq.a₀ * seq.r ^ n) := rfl
|
||||
_ = seq.a₀ * seq.r ^ (n + 1) := by ring
|
||||
_ = seq.termClosed (n + 1) := rfl)
|
||||
|
||||
/--[1]
|
||||
Summation of the first `n` terms of a geometric sequence.
|
||||
|
|
|
@ -5,7 +5,6 @@
|
|||
Harcourt/Academic Press, 2001.
|
||||
-/
|
||||
|
||||
import Mathlib.Tactic.NormCast
|
||||
import Mathlib.Tactic.Ring
|
||||
|
||||
/--
|
||||
|
|
|
@ -4,24 +4,24 @@
|
|||
[{"git":
|
||||
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
||||
"subDir?": null,
|
||||
"rev": "7e974fd3806866272e9f6d9e44fa04c210a21f87",
|
||||
"rev": "0107c50abf149a48b5b9ad08a0b2a2093bcb567a",
|
||||
"name": "mathlib",
|
||||
"inputRev?": null}},
|
||||
"inputRev?": "0107c50abf149a48b5b9ad08a0b2a2093bcb567a"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/gebner/quote4",
|
||||
"subDir?": null,
|
||||
"rev": "7ac99aa3fac487bec1d5860e751b99c7418298cf",
|
||||
"rev": "7ae096b232087096ff0243a2b70d32720d2621ae",
|
||||
"name": "Qq",
|
||||
"inputRev?": "master"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/JLimperg/aesop",
|
||||
"subDir?": null,
|
||||
"rev": "ba61f7fec6174d8c7d2796457da5a8d0b0da44c6",
|
||||
"rev": "071464ac36e339afb7a87640aa1f8121f707a59a",
|
||||
"name": "aesop",
|
||||
"inputRev?": "master"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/leanprover/std4",
|
||||
"subDir?": null,
|
||||
"rev": "de7e2a79905a3f87cad1ad5bf57045206f9738c7",
|
||||
"rev": "5507f9d8409f93b984ce04eccf4914d534e6fca2",
|
||||
"name": "std",
|
||||
"inputRev?": "main"}}]}
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
import Lake
|
||||
open Lake DSL
|
||||
|
||||
require mathlib from git
|
||||
"https://github.com/leanprover-community/mathlib4.git"
|
||||
|
||||
package «Bookshelf»
|
||||
|
||||
require mathlib from git
|
||||
"https://github.com/leanprover-community/mathlib4.git" @
|
||||
"0107c50abf149a48b5b9ad08a0b2a2093bcb567a"
|
||||
|
||||
@[default_target]
|
||||
lean_lib «Bookshelf» {
|
||||
-- add library configuration options here
|
||||
|
|
|
@ -1 +1 @@
|
|||
leanprover/lean4:nightly-2023-02-10
|
||||
leanprover/lean4:nightly-2023-04-02
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
/-
|
||||
# References
|
||||
|
||||
1. Fraleigh, John B. A First Course in Abstract Algebra, n.d.
|
||||
-/
|
||||
import FirstCourseAbstractAlgebra.Exercises1
|
|
@ -0,0 +1,18 @@
|
|||
/-
|
||||
# References
|
||||
|
||||
1. Fraleigh, John B. A First Course in Abstract Algebra, n.d.
|
||||
-/
|
||||
|
||||
import Mathlib.Data.Complex.Basic
|
||||
|
||||
open Complex
|
||||
open HPow
|
||||
|
||||
-- In Exercises 1 through 9 compute the given arithmetic expression and give the
|
||||
-- answer in the form $a + bi$ for $a, b ∈ ℝ$.
|
||||
|
||||
theorem ex1_1 : I^3 = 0 + (-1) * I := calc
|
||||
I^3
|
||||
= I * (I * hPow I 1) := rfl
|
||||
_ = 0 + (-1) * I := by simp
|
|
@ -0,0 +1,28 @@
|
|||
{"version": 4,
|
||||
"packagesDir": "lake-packages",
|
||||
"packages":
|
||||
[{"path": {"name": "Bookshelf", "dir": "./../bookshelf"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/leanprover-community/mathlib4.git",
|
||||
"subDir?": null,
|
||||
"rev": "0107c50abf149a48b5b9ad08a0b2a2093bcb567a",
|
||||
"name": "mathlib",
|
||||
"inputRev?": "0107c50abf149a48b5b9ad08a0b2a2093bcb567a"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/gebner/quote4",
|
||||
"subDir?": null,
|
||||
"rev": "7ae096b232087096ff0243a2b70d32720d2621ae",
|
||||
"name": "Qq",
|
||||
"inputRev?": "master"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/JLimperg/aesop",
|
||||
"subDir?": null,
|
||||
"rev": "071464ac36e339afb7a87640aa1f8121f707a59a",
|
||||
"name": "aesop",
|
||||
"inputRev?": "master"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/leanprover/std4",
|
||||
"subDir?": null,
|
||||
"rev": "5507f9d8409f93b984ce04eccf4914d534e6fca2",
|
||||
"name": "std",
|
||||
"inputRev?": "main"}}]}
|
|
@ -0,0 +1,14 @@
|
|||
import Lake
|
||||
open Lake DSL
|
||||
|
||||
package «first-course-abstract-algebra»
|
||||
|
||||
require Bookshelf from "../bookshelf"
|
||||
require mathlib from git
|
||||
"https://github.com/leanprover-community/mathlib4.git" @
|
||||
"0107c50abf149a48b5b9ad08a0b2a2093bcb567a"
|
||||
|
||||
@[default_target]
|
||||
lean_lib «FirstCourseAbstractAlgebra» {
|
||||
-- add library configuration options here
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
leanprover/lean4:nightly-2023-04-02
|
|
@ -7,7 +7,7 @@
|
|||
"subDir?": null,
|
||||
"rev": "7e974fd3806866272e9f6d9e44fa04c210a21f87",
|
||||
"name": "mathlib",
|
||||
"inputRev?": null}},
|
||||
"inputRev?": "7e974fd3806866272e9f6d9e44fa04c210a21f87"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/gebner/quote4",
|
||||
"subDir?": null,
|
||||
|
|
|
@ -1 +1 @@
|
|||
leanprover/lean4:nightly-2023-02-12
|
||||
leanprover/lean4:nightly-2023-04-02
|
||||
|
|
|
@ -45,8 +45,9 @@ Nat.recOn (motive := fun x => Nat.zero + x = x)
|
|||
(fun (n : Nat) (ih : Nat.zero + n = n) =>
|
||||
show Nat.zero + n.succ = n.succ from
|
||||
calc
|
||||
Nat.zero + n.succ = (Nat.zero + n).succ := add_succ Nat.zero n
|
||||
_ = n.succ := by rw [ih])
|
||||
Nat.zero + n.succ
|
||||
= (Nat.zero + n).succ := add_succ Nat.zero n
|
||||
_ = n.succ := by rw [ih])
|
||||
|
||||
-- Additional definitions.
|
||||
def mul (m n : Nat) : Nat :=
|
||||
|
@ -105,12 +106,12 @@ theorem length_inject_anywhere (x : α) (as bs : List α)
|
|||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.length (head :: tail ++ [x] ++ bs)
|
||||
= List.length (tail ++ [x] ++ bs) + 1 := rfl
|
||||
_ = List.length tail + List.length bs + 1 + 1 := by rw [ih]
|
||||
_ = List.length tail + (List.length bs + 1) + 1 := by rw [Nat.add_assoc (List.length tail)]
|
||||
_ = List.length tail + (1 + List.length bs) + 1 := by rw [Nat.add_comm (List.length bs)]
|
||||
_ = List.length tail + 1 + List.length bs + 1 := by rw [Nat.add_assoc (List.length tail) 1]
|
||||
_ = List.length (head :: tail) + List.length bs + 1 := rfl
|
||||
= List.length (tail ++ [x] ++ bs) + 1 := rfl
|
||||
_ = List.length tail + List.length bs + 1 + 1 := by rw [ih]
|
||||
_ = List.length tail + (List.length bs + 1) + 1 := by rw [Nat.add_assoc (List.length tail)]
|
||||
_ = List.length tail + (1 + List.length bs) + 1 := by rw [Nat.add_comm (List.length bs)]
|
||||
_ = List.length tail + 1 + List.length bs + 1 := by rw [Nat.add_assoc (List.length tail) 1]
|
||||
_ = List.length (head :: tail) + List.length bs + 1 := rfl
|
||||
|
||||
theorem list_reverse_aux_append (as bs : List α)
|
||||
: List.reverseAux as bs = List.reverse as ++ bs := by
|
||||
|
@ -118,12 +119,12 @@ theorem list_reverse_aux_append (as bs : List α)
|
|||
| nil => rw [List.reverseAux, List.reverse, List.reverseAux, List.nil_append]
|
||||
| cons head tail ih => calc
|
||||
List.reverseAux (head :: tail) bs
|
||||
= List.reverseAux tail (head :: bs) := rfl
|
||||
_ = List.reverse tail ++ (head :: bs) := by rw [ih]
|
||||
_ = List.reverse tail ++ ([head] ++ bs) := rfl
|
||||
_ = List.reverse tail ++ [head] ++ bs := by rw [List.append_assoc]
|
||||
_ = List.reverseAux tail [head] ++ bs := by rw [ih]
|
||||
_ = List.reverseAux (head :: tail) [] ++ bs := rfl
|
||||
= List.reverseAux tail (head :: bs) := rfl
|
||||
_ = List.reverse tail ++ (head :: bs) := by rw [ih]
|
||||
_ = List.reverse tail ++ ([head] ++ bs) := rfl
|
||||
_ = List.reverse tail ++ [head] ++ bs := by rw [List.append_assoc]
|
||||
_ = List.reverseAux tail [head] ++ bs := by rw [ih]
|
||||
_ = List.reverseAux (head :: tail) [] ++ bs := rfl
|
||||
|
||||
theorem length_reverse (t : List α)
|
||||
: List.length (List.reverse t) = List.length t := by
|
||||
|
@ -131,14 +132,14 @@ theorem length_reverse (t : List α)
|
|||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.length (List.reverse (head :: tail))
|
||||
= List.length (List.reverseAux tail [head]) := rfl
|
||||
_ = List.length (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.length (List.reverse tail) + List.length [head] := by simp
|
||||
_ = List.length tail + List.length [head] := by rw [ih]
|
||||
_ = List.length tail + 1 := rfl
|
||||
_ = List.length [] + List.length tail + 1 := by simp
|
||||
_ = List.length ([] ++ [head] ++ tail) := by rw [length_inject_anywhere]
|
||||
_ = List.length (head :: tail) := rfl
|
||||
= List.length (List.reverseAux tail [head]) := rfl
|
||||
_ = List.length (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.length (List.reverse tail) + List.length [head] := by simp
|
||||
_ = List.length tail + List.length [head] := by rw [ih]
|
||||
_ = List.length tail + 1 := rfl
|
||||
_ = List.length [] + List.length tail + 1 := by simp
|
||||
_ = List.length ([] ++ [head] ++ tail) := by rw [length_inject_anywhere]
|
||||
_ = List.length (head :: tail) := rfl
|
||||
|
||||
theorem reverse_reverse_aux (as bs : List α)
|
||||
: List.reverse (as ++ bs) = List.reverse bs ++ List.reverse as := by
|
||||
|
@ -146,14 +147,14 @@ theorem reverse_reverse_aux (as bs : List α)
|
|||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.reverse (head :: tail ++ bs)
|
||||
= List.reverseAux (head :: tail ++ bs) [] := rfl
|
||||
_ = List.reverseAux (tail ++ bs) [head] := rfl
|
||||
_ = List.reverse (tail ++ bs) ++ [head] := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse bs ++ List.reverse tail ++ [head] := by rw [ih]
|
||||
_ = List.reverse bs ++ (List.reverse tail ++ [head]) := by rw [List.append_assoc]
|
||||
_ = List.reverse bs ++ (List.reverseAux tail [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse bs ++ (List.reverseAux (head :: tail) []) := rfl
|
||||
_ = List.reverse bs ++ List.reverse (head :: tail) := rfl
|
||||
= List.reverseAux (head :: tail ++ bs) [] := rfl
|
||||
_ = List.reverseAux (tail ++ bs) [head] := rfl
|
||||
_ = List.reverse (tail ++ bs) ++ [head] := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse bs ++ List.reverse tail ++ [head] := by rw [ih]
|
||||
_ = List.reverse bs ++ (List.reverse tail ++ [head]) := by rw [List.append_assoc]
|
||||
_ = List.reverse bs ++ (List.reverseAux tail [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse bs ++ (List.reverseAux (head :: tail) []) := rfl
|
||||
_ = List.reverse bs ++ List.reverse (head :: tail) := rfl
|
||||
|
||||
theorem reverse_reverse (t : List α)
|
||||
: List.reverse (List.reverse t) = t := by
|
||||
|
@ -161,12 +162,12 @@ theorem reverse_reverse (t : List α)
|
|||
| nil => simp
|
||||
| cons head tail ih => calc
|
||||
List.reverse (List.reverse (head :: tail))
|
||||
= List.reverse (List.reverseAux tail [head]) := rfl
|
||||
_ = List.reverse (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse [head] ++ List.reverse (List.reverse tail) := by rw [reverse_reverse_aux]
|
||||
_ = List.reverse [head] ++ tail := by rw [ih]
|
||||
_ = [head] ++ tail := by simp
|
||||
_ = head :: tail := rfl
|
||||
= List.reverse (List.reverseAux tail [head]) := rfl
|
||||
_ = List.reverse (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
|
||||
_ = List.reverse [head] ++ List.reverse (List.reverse tail) := by rw [reverse_reverse_aux]
|
||||
_ = List.reverse [head] ++ tail := by rw [ih]
|
||||
_ = [head] ++ tail := by simp
|
||||
_ = head :: tail := rfl
|
||||
|
||||
end ex2
|
||||
|
||||
|
|
|
@ -1 +1 @@
|
|||
leanprover/lean4:nightly-2023-02-10
|
||||
leanprover/lean4:nightly-2023-04-02
|
||||
|
|
Loading…
Reference in New Issue