Finish apostol exercises 1.7.
parent
b8ea0ae7ad
commit
5bfc41b171
|
@ -1,7 +1,10 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
\usepackage{amsmath}
|
\usepackage{amsmath}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{mathrsfs}
|
||||||
|
|
||||||
\input{../../preamble}
|
\input{../../preamble}
|
||||||
|
\graphicspath{{./images/}}
|
||||||
|
|
||||||
\newcommand{\larea}[2]{\lean{../..}{Bookshelf/Real/Geometry/Area}{#1}{#2}}
|
\newcommand{\larea}[2]{\lean{../..}{Bookshelf/Real/Geometry/Area}{#1}{#2}}
|
||||||
\newcommand{\lrect}[2]{\lean{../..}{Bookshelf/Real/Geometry/Rectangle}{#1}{#2}}
|
\newcommand{\lrect}[2]{\lean{../..}{Bookshelf/Real/Geometry/Rectangle}{#1}{#2}}
|
||||||
|
@ -9,7 +12,7 @@
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
The properties of area in this set of exercises are to be deduced from the
|
The properties of area in this set of exercises are to be deduced from the
|
||||||
axioms for area stated in the foregoing section.
|
axioms for area stated in the foregoing section.
|
||||||
|
|
||||||
\section{Exercise 1}%
|
\section{Exercise 1}%
|
||||||
\label{sec:exercise-1}
|
\label{sec:exercise-1}
|
||||||
|
@ -40,20 +43,20 @@ A set consisting of a finite number of points in a plane.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
We show for all $k > 0$, a set consisting of $k$ points in a plane is
|
Define predicate $P(n)$ as "A set consisting of $n$ points in a plane is
|
||||||
measurable with area $0$.
|
measurable with area $0$".
|
||||||
|
We use induction to prove $P(n)$ holds for all $n > 0$.
|
||||||
|
|
||||||
\paragraph{Base Case}%
|
\paragraph{Base Case}%
|
||||||
|
|
||||||
Consider a set $S$ consisting of a single point in a plane.
|
Consider a set $S$ consisting of a single point in a plane.
|
||||||
By \eqref{sub:exercise-1a}, $S$ is measurable with area $0$.
|
By \eqref{sub:exercise-1a}, $S$ is measurable with area $0$.
|
||||||
|
Thus $P(1)$ holds.
|
||||||
|
|
||||||
\paragraph{Induction Step}%
|
\paragraph{Induction Step}%
|
||||||
|
|
||||||
Define our induction hypothesis as, "Let $k > 0$ and assume a set consisting
|
Assume induction hypothesis $P(k)$ holds for some $k > 0$.
|
||||||
of $k$ points in a plane is measurable with area $0$."
|
Let $S_{k+1}$ be a set consisting of $k + 1$ points in a plane.
|
||||||
|
|
||||||
Consider a set $S_{k+1}$ consisting of $k + 1$ points in a plane.
|
|
||||||
Pick an arbitrary point of $S_{k+1}$.
|
Pick an arbitrary point of $S_{k+1}$.
|
||||||
Denote the set containing just this point as $T$.
|
Denote the set containing just this point as $T$.
|
||||||
Denote the remaining set of points as $S_k$.
|
Denote the remaining set of points as $S_k$.
|
||||||
|
@ -68,8 +71,6 @@ A set consisting of a finite number of points in a plane.
|
||||||
& = a(S_k) + a(T) - a(S_k \cap T) \nonumber \\
|
& = a(S_k) + a(T) - a(S_k \cap T) \nonumber \\
|
||||||
& = 0 + 0 - a(S_k \cap T). \label{sub:exercise-1b-eq1}
|
& = 0 + 0 - a(S_k \cap T). \label{sub:exercise-1b-eq1}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\noindent
|
|
||||||
There are two cases to consider:
|
There are two cases to consider:
|
||||||
|
|
||||||
\subparagraph{Case 1}%
|
\subparagraph{Case 1}%
|
||||||
|
@ -86,12 +87,11 @@ A set consisting of a finite number of points in a plane.
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\noindent
|
\noindent
|
||||||
In both cases, \eqref{sub:exercise-1b-eq1} evaluates to $0$, implying
|
In both cases, \eqref{sub:exercise-1b-eq1} evaluates to $0$, implying
|
||||||
$a(S_{k+1}) = 0$ as expected.
|
$P(k + 1)$ as expected.
|
||||||
|
|
||||||
\paragraph{Conclusion}%
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
By mathematical induction, it follows for all $n > 0$, a set consisting of
|
By mathematical induction, it follows for all $n > 0$, $P(n)$ is true.
|
||||||
$n$ points in a plane is measurable with area $0$.
|
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -102,8 +102,9 @@ The union of a finite collection of line segments in a plane.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
We show for all $k > 0$, a set consisting of $k$ line segments in a plane is
|
Define predicate $P(n)$ as "A set consisting of $n$ line segments in a plane
|
||||||
measurable with area $0$.
|
is measurable with area $0$".
|
||||||
|
We use induction to prove $P(n)$ holds for all $n > 0$.
|
||||||
|
|
||||||
\paragraph{Base Case}%
|
\paragraph{Base Case}%
|
||||||
|
|
||||||
|
@ -113,13 +114,12 @@ The union of a finite collection of line segments in a plane.
|
||||||
By \larea{Choice-of-Scale}{Choice of Scale}, $S$ is measurable with area its
|
By \larea{Choice-of-Scale}{Choice of Scale}, $S$ is measurable with area its
|
||||||
width $w$ times its height $h$.
|
width $w$ times its height $h$.
|
||||||
Therefore $a(S) = wh = 0$.
|
Therefore $a(S) = wh = 0$.
|
||||||
|
Thus $P(1)$ holds.
|
||||||
|
|
||||||
\paragraph{Induction Step}%
|
\paragraph{Induction Step}%
|
||||||
|
|
||||||
Define our induction hypothesis as, "Let $k > 0$ and assume a set consisting
|
Assume induction hypothesis $P(k)$ holds for some $k > 0$.
|
||||||
of $k$ line segments in a plane is measurable with area $0$."
|
Let $S_{k+1}$ be a set consisting of $k + 1$ line segments in a plane.
|
||||||
|
|
||||||
Consider a set $S_{k+1}$ consisting of $k + 1$ line segments in a plane.
|
|
||||||
Pick an arbitrary line segment of $S_{k+1}$.
|
Pick an arbitrary line segment of $S_{k+1}$.
|
||||||
Denote the set containing just this line segment as $T$.
|
Denote the set containing just this line segment as $T$.
|
||||||
Denote the remaining set of line segments as $S_k$.
|
Denote the remaining set of line segments as $S_k$.
|
||||||
|
@ -134,8 +134,6 @@ The union of a finite collection of line segments in a plane.
|
||||||
& = a(S_k) + a(T) - a(S_k \cap T) \nonumber \\
|
& = a(S_k) + a(T) - a(S_k \cap T) \nonumber \\
|
||||||
& = 0 + 0 - a(S_k \cap T). \label{sub:exercise-1c-eq1}
|
& = 0 + 0 - a(S_k \cap T). \label{sub:exercise-1c-eq1}
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\noindent
|
|
||||||
There are two cases to consider:
|
There are two cases to consider:
|
||||||
|
|
||||||
\subparagraph{Case 1}%
|
\subparagraph{Case 1}%
|
||||||
|
@ -152,12 +150,11 @@ The union of a finite collection of line segments in a plane.
|
||||||
\vspace{8pt}
|
\vspace{8pt}
|
||||||
\noindent
|
\noindent
|
||||||
In both cases, \eqref{sub:exercise-1c-eq1} evaluates to $0$, implying
|
In both cases, \eqref{sub:exercise-1c-eq1} evaluates to $0$, implying
|
||||||
$a(S_{k+1}) = 0$ as expected.
|
$P(k + 1)$ as expected.
|
||||||
|
|
||||||
\paragraph{Conclusion}%
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
By mathematical induction, it follows for all $n > 0$, a set consisting of
|
By mathematical induction, it follows for all $n > 0$, $P(n)$ is true.
|
||||||
$n$ line segments in a plane is measurable with area $0$.
|
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -165,12 +162,450 @@ The union of a finite collection of line segments in a plane.
|
||||||
\label{sec:exercise-2}
|
\label{sec:exercise-2}
|
||||||
|
|
||||||
Every right triangular region is measurable because it can be obtained as the
|
Every right triangular region is measurable because it can be obtained as the
|
||||||
intersection of two rectangles. Prove that every triangular region is measurable
|
intersection of two rectangles.
|
||||||
and that its area is one half the product of its base and altitude.
|
Prove that every triangular region is measurable and that its area is one half
|
||||||
|
the product of its base and altitude.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $T'$ be a triangular region with base of length $a$, height of length $b$,
|
||||||
|
and hypotenuse of length $c$.
|
||||||
|
Consider the translation and rotation of $T'$, say $T$, such that its
|
||||||
|
hypotenuse is entirely within quadrant I and the vertex opposite the
|
||||||
|
hypotenuse is situated at point $(0, 0)$.
|
||||||
|
|
||||||
|
Let $R$ be a rectangle of width $a$, height $b$, and bottom-left corner at
|
||||||
|
$(0, 0)$.
|
||||||
|
By construction, $R$ covers all of $T$.
|
||||||
|
Let $S$ be a rectangle of width $c$ and height $a\sin{\theta}$, where $\theta$
|
||||||
|
is the acute angle measured from the bottom-right corner of $T$ relative
|
||||||
|
to the $x$-axis.
|
||||||
|
As an example, consider the image below of triangle $T$ with width $4$ and
|
||||||
|
height $3$:
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\includegraphics{right-triangle}
|
||||||
|
\centering
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
By \larea{Choice-of-Scale}{Choice of Scale}, both $R$ and $S$ are measurable.
|
||||||
|
By this same axiom, $a(R) = ab$ and $a(S) = ca\sin{\theta}$.
|
||||||
|
By the \larea{Additive-Property}{Additive Property}, $R \cup S$ and $R \cap S$
|
||||||
|
are both measurable.
|
||||||
|
$a(R \cap S) = a(T)$ and $a(R \cup S)$ can be determined by noting that
|
||||||
|
$R$'s construction implies identity $a(R) = 2a(T)$.
|
||||||
|
Therefore
|
||||||
|
\begin{align*}
|
||||||
|
a(T)
|
||||||
|
& = a(R \cap S) \\
|
||||||
|
& = a(R) + a(S) - a(R \cup S) \\
|
||||||
|
& = ab + ca\sin{\theta} - a(R \cup S) \\
|
||||||
|
& = ab + ca\sin{\theta} - (ca\sin{\theta} + \frac{1}{2}a(R)) \\
|
||||||
|
& = ab + ca\sin{\theta} - ca\sin{\theta} - a(T).
|
||||||
|
\end{align*}
|
||||||
|
Solving for $a(T)$ gives the desired identity: $$a(T) = \frac{1}{2}ab.$$
|
||||||
|
By \larea{Invariance-Under-Congruence}{Invariance Under Congruence},
|
||||||
|
$a(T') = a(T)$, concluding our proof.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\section{Exercise 3}%
|
||||||
|
\label{sec:exercise-3}
|
||||||
|
|
||||||
|
Prove that every trapezoid and every parallelogram is measurable and derive the
|
||||||
|
usual formulas for their areas.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
We begin by proving the formula for a trapezoid.
|
||||||
|
Let $S$ be a trapezoid with height $h$ and bases $b_1$ and $b_2$, $b_1 < b_2$.
|
||||||
|
There are three cases to consider:
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\includegraphics[width=\textwidth]{trapezoid-cases}
|
||||||
|
\centering
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\paragraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $S$ is a right trapezoid.
|
||||||
|
Then $S$ is the union of non-overlapping rectangle $R$ of width $b_1$ and
|
||||||
|
height $h$ with right triangle $T$ of base $b_2 - b_1$ and height $h$.
|
||||||
|
By \larea{Choice-of-Scale}{Choice of Scale}, $R$ is measurable.
|
||||||
|
By \eqref{sec:exercise-2}, $T$ is measurable.
|
||||||
|
By the \larea{Additive-Property}{Additive Property}, $R \cup T$ and $R \cap T$
|
||||||
|
are both measurable and
|
||||||
|
\begin{align*}
|
||||||
|
a(S)
|
||||||
|
& = a(R \cup T) \\
|
||||||
|
& = a(R) + a(T) - a(R \cap T) \\
|
||||||
|
& = a(R) + a(T) & \text{by construction} \\
|
||||||
|
& = b_1h + a(T) & \text{Choice of Scale} \\
|
||||||
|
& = b_1h + \frac{1}{2}(b_2 - b_1)h & \eqref{sec:exercise-2} \\
|
||||||
|
& = \frac{b_1 + b_2}{2}h.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $S$ is an acute trapezoid.
|
||||||
|
Then $S$ is the union of non-overlapping triangle $T$ and right trapezoid $R$.
|
||||||
|
Let $c$ denote the length of base $T$.
|
||||||
|
Then $R$ has longer base edge of length $b_2 - c$.
|
||||||
|
By \eqref{sec:exercise-2}, $T$ is measurable.
|
||||||
|
By Case 1, $R$ is measurable.
|
||||||
|
By the \larea{Additive-Property}{Additive Property}, $R \cup T$ and $R \cap T$
|
||||||
|
are both measurable and
|
||||||
|
\begin{align*}
|
||||||
|
a(S)
|
||||||
|
& = a(T) + a(R) - a(R \cap T) \\
|
||||||
|
& = a(T) + a(R) & \text{by construction} \\
|
||||||
|
& = \frac{1}{2}ch + a(R) & \eqref{sec:exercise-2} \\
|
||||||
|
& = \frac{1}{2}ch + \frac{b_1 + b_2 - c}{2}h & \text{Case 1} \\
|
||||||
|
& = \frac{b_1 + b_2}{2}h.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{Case 3}%
|
||||||
|
|
||||||
|
Suppose $S$ is an obtuse trapezoid.
|
||||||
|
Then $S$ is the union of non-overlapping triangle $T$ and right trapezoid $R$.
|
||||||
|
Let $c$ denote the length of base $T$.
|
||||||
|
Reflect $T$ vertically to form another right triangle, say $T'$.
|
||||||
|
Then $T' \cup R$ is an acute trapezoid.
|
||||||
|
By \larea{Invariance-Under-Congruence}{Invariance Under Congruence},
|
||||||
|
\begin{equation}
|
||||||
|
\label{par:exercise-3-case-3-eq1}
|
||||||
|
\tag{3.1}
|
||||||
|
a(T' \cup R) = a(T \cup R).
|
||||||
|
\end{equation}
|
||||||
|
By construction, $T' \cup R$ has height $h$ and bases $b_1 - c$ and $b_2 + c$
|
||||||
|
meaning
|
||||||
|
\begin{align*}
|
||||||
|
a(T \cup R)
|
||||||
|
& = a(T' \cup R) & \eqref{par:exercise-3-case-3-eq1} \\
|
||||||
|
& = \frac{b_1 - c + b_2 + c}{2}h & \text{Case 2} \\
|
||||||
|
& = \frac{b_1 + b_2}{2}h.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
These cases are exhaustive and in agreement with one another.
|
||||||
|
Thus $S$ is measurable and $$a(S) = \frac{b_1 + b_2}{2}h.$$
|
||||||
|
|
||||||
|
\vspace{4pt}
|
||||||
|
\hrule
|
||||||
|
\vspace{10pt}
|
||||||
|
|
||||||
|
Let $P$ be a parallelogram with base $b$ and height $h$.
|
||||||
|
Then $P$ is the union of non-overlapping triangle $T$ and right trapezoid $R$.
|
||||||
|
Let $c$ denote the length of base $T$.
|
||||||
|
Reflect $T$ vertically to form another right triangle, say $T'$.
|
||||||
|
Then $T' \cup R$ is an acute trapezoid.
|
||||||
|
By \larea{Invariance-Under-Congruence}{Invariance Under Congruence},
|
||||||
|
\begin{equation}
|
||||||
|
\label{par:exercise-3-eq2}
|
||||||
|
\tag{3.2}
|
||||||
|
a(T' \cup R) = a(T \cup R).
|
||||||
|
\end{equation}
|
||||||
|
By construction, $T' \cup R$ has height $h$ and bases $b - c$ and $b + c$
|
||||||
|
meaning
|
||||||
|
\begin{align*}
|
||||||
|
a(T \cup R)
|
||||||
|
& = a(T' \cup R) & \eqref{par:exercise-3-eq2} \\
|
||||||
|
& = \frac{b - c + b + c}{2}h & \text{Area of Trapezoid} \\
|
||||||
|
& = bh.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\section{Exercise 4}%
|
||||||
|
\label{sec:exercise-4}
|
||||||
|
|
||||||
|
A point $(x, y)$ is called a \textit{lattice point} if both coordinates $x$ and
|
||||||
|
$y$ are integers.
|
||||||
|
Let $P$ be a polygon whose vertices are lattice points.
|
||||||
|
The area of $P$ is $I + \frac{1}{2}B - 1$, where $I$ denotes the number of
|
||||||
|
lattice points inside the polygon and $B$ denotes the number on the boundary.
|
||||||
|
|
||||||
|
\subsection{Exercise 4a}%
|
||||||
|
\label{sub:exercise-4a}
|
||||||
|
|
||||||
|
Prove that the formula is valid for rectangles with sides parallel to the
|
||||||
|
coordinate axes.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $P$ be a rectangle with width $w$, height $h$, and lattice points for
|
||||||
|
vertices.
|
||||||
|
We assume $P$ has three non-collinear points, ruling out any instances of
|
||||||
|
points or line segments.
|
||||||
|
By \larea{Choice-of-Scale}{Choice of Scale}, $P$ is measurable with area
|
||||||
|
$a(P) = wh$.
|
||||||
|
By construction, $P$ has $I = (w - 1)(h - 1)$ interior lattice points and
|
||||||
|
$B = 2(w + h)$ lattice points on its boundary.
|
||||||
|
The following shows the lattice point area formula is in agreement with
|
||||||
|
$a(P)$:
|
||||||
|
\begin{align*}
|
||||||
|
I + \frac{1}{2}B - 1
|
||||||
|
& = (w - 1)(h - 1) + \frac{1}{2}\left[ 2(w + h) \right] - 1 \\
|
||||||
|
& = (wh - w - h + 1) + \frac{1}{2}\left[ 2(w + h) \right] - 1 \\
|
||||||
|
& = (wh - w - h + 1) + (w + h) - 1 \\
|
||||||
|
& = wh.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{Exercise 4b}%
|
||||||
|
\label{sub:exercise-4b}
|
||||||
|
|
||||||
|
Prove that the formula is valid for right triangles and parallelograms.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $T'$ be a right triangle with width $w$ and height $h$.
|
||||||
|
Let $T$ be the triangle $T'$ translated, rotated, and reflected such that the
|
||||||
|
its vertices are $(0, 0)$, $(0, w)$, and $(w, h)$, where $w \leq h$.
|
||||||
|
Let $R$ be the overlapping rectangle of width $w$ and height $h$, situated
|
||||||
|
with bottom-left corner at $(0, 0)$.
|
||||||
|
There are two cases to consider:
|
||||||
|
|
||||||
|
\paragraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $h / w$ is an integral value.
|
||||||
|
Then there exist $w + 1$ lattice points on $T$'s hypotenuse.
|
||||||
|
The number of interior lattices points of $T$ is
|
||||||
|
\begin{align*}
|
||||||
|
I
|
||||||
|
& = \frac{1}{2}\left[ (w - 1)(h - 1) - (w - 1) \right] \\
|
||||||
|
& = \frac{1}{2}\left[ wh - 2w - h + 2 \right].
|
||||||
|
\end{align*}
|
||||||
|
The number of boundary lattice points of $T$ is
|
||||||
|
\begin{align*}
|
||||||
|
B
|
||||||
|
& = (w + 1) + h + (w - 1) \\
|
||||||
|
& = 2w + h.
|
||||||
|
\end{align*}
|
||||||
|
Thus
|
||||||
|
\begin{align*}
|
||||||
|
I + \frac{1}{2}B - 1
|
||||||
|
& = \frac{wh - 2w - h + 2}{2} + \frac{2w + h}{2} - 1 \\
|
||||||
|
& = \frac{wh - 2w - h + 2 + 2w + h - 2}{2} \\
|
||||||
|
& = \frac{wh}{2}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $h / w$ is not an integral value.
|
||||||
|
Then there exist exactly 2 lattice points on $T$'s hypotenuse.
|
||||||
|
The number of interior lattice points of $T$ is
|
||||||
|
\begin{align*}
|
||||||
|
I
|
||||||
|
& = \frac{1}{2}\left[ (w - 1)(h - 1) \right] \\
|
||||||
|
& = \frac{1}{2}\left[ wh - w - h + 1 \right].
|
||||||
|
\end{align*}
|
||||||
|
The number of boundary lattice points of $T$ is
|
||||||
|
\begin{align*}
|
||||||
|
B
|
||||||
|
& = (w + 1) + h \\
|
||||||
|
& = w + h + 1.
|
||||||
|
\end{align*}
|
||||||
|
Thus
|
||||||
|
\begin{align*}
|
||||||
|
I + \frac{1}{2}B - 1
|
||||||
|
& = \frac{wh - w - h + 1}{2} + \frac{w + h + 1}{2} - 1 \\
|
||||||
|
& = \frac{wh - w - h + 1 + w + h + 1 - 2}{2} \\
|
||||||
|
& = \frac{wh}{2}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
These cases are exhaustive and in agreement with one another.
|
||||||
|
Thus $$a(T) = I + \frac{1}{2}B - 1.$$
|
||||||
|
We do not prove this formula is valid for parallelograms here.
|
||||||
|
Instead, refer to \eqref{sub:exercise-4c} below.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{Exercise 4c}%
|
||||||
|
\label{sub:exercise-4c}
|
||||||
|
|
||||||
|
Use induction on the number of edges to construct a proof for general polygons.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Define predicate $P(n)$ as "An $n$-polygon with vertices on lattice points has
|
||||||
|
area $I + \frac{1}{2}B - 1$."
|
||||||
|
We use induction to prove $P(n)$ holds for all $n \geq 3$.
|
||||||
|
|
||||||
|
\paragraph{Base Case}%
|
||||||
|
|
||||||
|
A $3$-polygon is a triangle.
|
||||||
|
By \eqref{sub:exercise-4b}, the lattice point area formula holds.
|
||||||
|
Thus $P(3)$ holds.
|
||||||
|
|
||||||
|
\paragraph{Induction Step}%
|
||||||
|
|
||||||
|
Assume induction hypothesis $P(k)$ holds for some $k \geq 3$.
|
||||||
|
Let $P$ be a $(k + 1)$-polygon with vertices on lattice points.
|
||||||
|
Such a polygon is equivalent to the union of a $k$-polygon $S$ with a
|
||||||
|
triangle $T$.
|
||||||
|
That is, $P = S \cup T$.
|
||||||
|
|
||||||
|
Let $I_P$ be the number of interior lattice points of $P$.
|
||||||
|
Let $B_P$ be the number of boundary lattice points of $P$.
|
||||||
|
Similarly, let $I_S$, $I_T$, $B_S$, and $B_T$ be the number of interior
|
||||||
|
and boundary lattice points of $S$ and $T$.
|
||||||
|
Let $c$ denote the number of boundary points shared between $S$ and $T$.
|
||||||
|
|
||||||
|
By our induction hypothesis, $a(S) = I_S + \frac{1}{2}B_S - 1$.
|
||||||
|
By our base case, $a(T) = I_T + \frac{1}{2}B_T - 1$.
|
||||||
|
By construction, it follows:
|
||||||
|
\begin{align*}
|
||||||
|
I_P & = I_S + I_T + c - 2 \\
|
||||||
|
B_P & = B_S + B_T - (c - 2) - c \\
|
||||||
|
& = B_S + B_T - 2c + 2.
|
||||||
|
\end{align*}
|
||||||
|
Applying the lattice point area formula to $P$ yields the following:
|
||||||
|
\begin{align*}
|
||||||
|
& I_P + \frac{1}{2}B_P - 1 \\
|
||||||
|
& = (I_S + I_T + c - 2) + \frac{1}{2}(B_S + B_T - 2c + 2) - 1 \\
|
||||||
|
& = I_S + I_T + c - 2 + \frac{1}{2}B_S + \frac{1}{2}B_T - c + 1 - 1 \\
|
||||||
|
& = (I_S + \frac{1}{2}B_S - 1) + (I_T + \frac{1}{2}B_T - 1) \\
|
||||||
|
& = a(S) + (I_T + \frac{1}{2}B_T - 1) & \text{induction hypothesis} \\
|
||||||
|
& = a(S) + a(T). & \text{base case}
|
||||||
|
\end{align*}
|
||||||
|
By the \larea{Additive-Property}{Additive Property}, $S \cup T$ is
|
||||||
|
measurable, $S \cap T$ is measurable, and
|
||||||
|
\begin{align*}
|
||||||
|
a(P)
|
||||||
|
& = a(S \cup T) \\
|
||||||
|
& = a(S) + a(T) - a(S \cap T) \\
|
||||||
|
& = a(S) + a(T). & \text{by construction}
|
||||||
|
\end{align*}
|
||||||
|
This shows the lattice point area formula is in agreement with our axiomatic
|
||||||
|
definition of area.
|
||||||
|
Thus $P(k + 1)$ holds.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
By mathematical induction, it follows for all $n \geq 3$, $P(n)$ is true.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{Exercise 5}%
|
||||||
|
\label{sub:exercise-5}
|
||||||
|
|
||||||
|
Prove that a triangle whose vertices are lattice points cannot be equilateral.
|
||||||
|
|
||||||
|
[\textit{Hint:} Assume there is such a triangle and compute its area in two
|
||||||
|
ways, using Exercises 2 and 4.]
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Proceed by contradiction.
|
||||||
|
Let $T$ be an equilateral triangle whose vertices are lattice points.
|
||||||
|
Assume each side of $T$ has length $a$.
|
||||||
|
Then $T$ has height $h = (a\sqrt{3}) / 2$.
|
||||||
|
By \eqref{sec:exercise-2},
|
||||||
|
\begin{equation}
|
||||||
|
\label{sub:exercise-5-eq1}
|
||||||
|
\tag{5.1}
|
||||||
|
a(T) = \frac{1}{2}ah = \frac{a^2\sqrt{3}}{4}.
|
||||||
|
\end{equation}
|
||||||
|
Let $I$ and $B$ denote the number of interior and boundary lattice points of
|
||||||
|
$T$ respectively.
|
||||||
|
By \eqref{sec:exercise-4},
|
||||||
|
\begin{equation}
|
||||||
|
\label{sub:exercise-5-eq2}
|
||||||
|
\tag{5.2}
|
||||||
|
a(T) = I + \frac{1}{2}B - 1.
|
||||||
|
\end{equation}
|
||||||
|
But \eqref{sub:exercise-5-eq1} is irrational whereas
|
||||||
|
\eqref{sub:exercise-5-eq2} is not.
|
||||||
|
This is a contradiction.
|
||||||
|
Thus, there is \textit{no} equilateral triangle whose vertices are lattice
|
||||||
|
points.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{Exercise 6}%
|
||||||
|
\label{sub:exercise-6}
|
||||||
|
|
||||||
|
Let $A = \{1, 2, 3, 4, 5\}$, and let $\mathscr{M}$ denote the class of all
|
||||||
|
subsets of $A$.
|
||||||
|
(There are 32 altogether, counting $A$ itself and the empty set $\emptyset$.)
|
||||||
|
For each set $S$ in $\mathscr{M}$, let $n(S)$ denote the number of distinct
|
||||||
|
elements in $S$.
|
||||||
|
If $S = \{1, 2, 3, 4\}$ and $T = \{3, 4, 5\}$, compute $n(S \cup T)$,
|
||||||
|
$n(S \cap T)$, $n(S - T)$, and $n(T - S)$.
|
||||||
|
Prove that the set function $n$ satisfies the first three axioms for area.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $S = \{1, 2, 3, 4\}$ and $T = \{3, 4, 5\}$.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
n(S \cup T)
|
||||||
|
& = n(\{1, 2, 3, 4\} \cup \{3, 4, 5\}) \\
|
||||||
|
& = n(\{1, 2, 3, 4, 5\}) \\
|
||||||
|
& = 5. \\
|
||||||
|
n(S \cap T)
|
||||||
|
& = n(\{1, 2, 3, 4\} \cap \{3, 4, 5\}) \\
|
||||||
|
& = n(\{3, 4\}) \\
|
||||||
|
& = 2. \\
|
||||||
|
n(S - T)
|
||||||
|
& = n(\{1, 2, 3, 4\} - \{3, 4, 5\}) \\
|
||||||
|
& = n(\{1, 2\}) \\
|
||||||
|
& = 2. \\
|
||||||
|
n(T - S)
|
||||||
|
& = n(\{3, 4, 5\} - \{1, 2, 3, 4\}) \\
|
||||||
|
& = n(\{5\}) \\
|
||||||
|
& = 1.
|
||||||
|
\end{align*}
|
||||||
|
We now prove $n$ satisfies the first three axioms for area.
|
||||||
|
|
||||||
|
\paragraph{Nonnegative Property}%
|
||||||
|
|
||||||
|
$n$ returns the length of some member of $\mathscr{M}$.
|
||||||
|
By hypothesis, the smallest possible input to $n$ is $\emptyset$.
|
||||||
|
Since $n(\emptyset) = 0$, it follows $n(S) \geq 0$ for all $S \subset A$.
|
||||||
|
|
||||||
|
\paragraph{Additive Property}%
|
||||||
|
|
||||||
|
Let $S$ and $T$ be members of $\mathscr{M}$.
|
||||||
|
It trivially follows that both $S \cup T$ and $S \cap T$ are in
|
||||||
|
$\mathscr{M}$.
|
||||||
|
Consider the value of $n(S \cup T)$.
|
||||||
|
There are two cases to consider:
|
||||||
|
|
||||||
|
\subparagraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $S \cap T = \emptyset$.
|
||||||
|
That is, there is no common element shared between $S$ and $T$.
|
||||||
|
Thus
|
||||||
|
\begin{align*}
|
||||||
|
n(S \cup T)
|
||||||
|
& = n(S) + n(T) \\
|
||||||
|
& = n(S) + n(T) - 0 \\
|
||||||
|
& = n(S) + n(T) - n(S \cap T).
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\subparagraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $S \cap T \neq \emptyset$.
|
||||||
|
Then $n(S) + n(T)$ counts each element of $S \cap T$ twice.
|
||||||
|
Therefore $n(S \cup T) = n(S) + n(T) - n(S \cap T)$.
|
||||||
|
|
||||||
|
\subparagraph{Conclusion}%
|
||||||
|
|
||||||
|
These cases are exhaustive and in agreement with one another.
|
||||||
|
Thus $n(S \cup T) = n(S) + n(T) - n(S \cap T)$.
|
||||||
|
|
||||||
|
\paragraph{Difference Property}%
|
||||||
|
|
||||||
|
Suppose $S, T \in \mathscr{M}$ such that $S \subseteq T$.
|
||||||
|
That is, every member of $S$ is a member of $T$.
|
||||||
|
By definition, $T - S$ consists of members in $T$ but not in $S$.
|
||||||
|
Thus $n(T - S) = n(T) - n(S)$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
Binary file not shown.
After Width: | Height: | Size: 8.9 KiB |
Loading…
Reference in New Issue