Theorem Proving in Lean. Part of exercises 4.

finite-set-exercises
Joshua Potter 2023-02-06 07:29:39 -07:00
parent bb34b14294
commit 5a06def3a6
1 changed files with 206 additions and 0 deletions

View File

@ -0,0 +1,206 @@
/- Exercises 4.6
-
- Avigad, Jeremy. Theorem Proving in Lean, n.d.
-/
import algebra.parity
import data.int.basic
import data.nat.basic
import data.real.basic
-- Exercise 1
--
-- Prove these equivalences. You should also try to understand why the reverse
-- implication is not derivable in the last example.
section ex_1
variables (α : Type*) (p q : α → Prop)
example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) :=
iff.intro
( assume h,
and.intro
(assume x, and.left (h x))
(assume x, and.right (h x)))
(assume ⟨h₁, h₂⟩ x, ⟨h₁ x, h₂ x⟩)
example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) :=
assume h₁ h₂ x,
have px : p x, from h₂ x,
h₁ x px
example : (∀ x, p x) (∀ x, q x) → ∀ x, p x q x :=
assume h₁ x,
h₁.elim
(assume h₂, or.inl (h₂ x))
(assume h₂, or.inr (h₂ x))
-- The implication in the above example cannot be proven in the other direction
-- because it may be the case predicate `p x` holds for certain values of `x`
-- but not others that `q x` may hold for (and vice versa).
end ex_1
-- Exercise 2
--
-- It is often possible to bring a component of a formula outside a universal
-- quantifier, when it does not depend on the quantified variable. Try proving
-- these (one direction of the second of these requires classical logic).
section ex_2
variables (α : Type*) (p q : α → Prop)
variable r : Prop
example : α → ((∀ x : α, r) ↔ r) :=
assume ha,
iff.intro (assume h, h ha) (assume hr ha, hr)
-- Ensure we do not use classical logic in the first or third subproblems.
section
open classical
example : (∀ x, p x r) ↔ (∀ x, p x) r :=
iff.intro
(assume h₁, or.elim (classical.em r)
(assume hr, or.inr hr)
(assume nr, or.inl (λ (x : α), or.elim (h₁ x)
(assume hp, hp)
(assume hr, absurd hr nr))))
(assume h₁, or.elim h₁
(assume h₂, (λ (x : α), or.inl (h₂ x)))
(assume hr, (λ (x : α), or.inr hr)))
end
example : (∀ x, r → p x) ↔ (r → ∀ x, p x) :=
iff.intro
(assume h₁ hr hx, h₁ hx hr)
(assume h₁ hx hr, h₁ hr hx)
end ex_2
-- Exercise 3
--
-- Consider the "barber paradox," that is, the claim that in a certain town
-- there is a (male) barber that shaves all and only the men who do not shave
-- themselves. Prove that this is a contradiction.
section ex_3
open classical
variables (men : Type*) (barber : men)
variable (shaves : men → men → Prop)
example (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x) :
false :=
have b : shaves barber barber ↔ ¬ shaves barber barber, from h barber,
or.elim (classical.em (shaves barber barber))
(assume b', absurd b' (iff.elim_left b b'))
(assume b', absurd (iff.elim_right b b') b')
end ex_3
-- Exercise 4
--
-- Remember that, without any parameters, an expression of type `Prop` is just
-- an assertion. Fill in the definitions of `prime` and `Fermat_prime` below,
-- and construct each of the given assertions. For example, you can say that
-- there are infinitely many primes by asserting that for every natural number
-- `n`, there is a prime number greater than `n.` Goldbachs weak conjecture
-- states that every odd number greater than `5` is the sum of three primes.
-- Look up the definition of a Fermat prime or any of the other statements, if
-- necessary.
section ex_4
def prime (n : ) : Prop :=
n > 1 ∧ ∀ (m : ), (1 < m ∧ m < n) → n % m ≠ 0
def infinitely_many_primes : Prop :=
∀ (n : ), (∃ (m : ), m > n ∧ prime m)
def Fermat_prime (n : ) : Prop :=
∃ (m : ), n = 2^(2^m) + 1
def infinitely_many_Fermat_primes : Prop :=
∀ (n : ), (∃ (m : ), m > n ∧ Fermat_prime m)
def goldbach_conjecture : Prop :=
∀ (n : ), even n ∧ n > 2 → (∃ (x y : ), prime x ∧ prime y ∧ x + y = n)
def Goldbach's_weak_conjecture : Prop :=
∀ (n : ), odd n ∧ n > 5 → (∃ (x y z : ), prime x ∧ prime y ∧ prime z ∧ x + y + z = n)
def Fermat's_last_theorem : Prop :=
∀ (n : ), n > 2 → (∀ (a b c : ), a^n + b^n ≠ c^n)
end ex_4
-- Exercise 5
--
-- Prove as many of the identities listed in Section 4.4 as you can.
section ex_5
open classical
variables (α : Type*) (p q : α → Prop)
variable r : Prop
example : (∃ x : α, r) → r :=
assume ⟨hx, hr⟩,
hr
example (a : α) : r → (∃ x : α, r) :=
assume hr,
exists.intro a hr
example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r :=
iff.intro
(assume ⟨hx, ⟨hp, hr⟩⟩, ⟨exists.intro hx hp, hr⟩)
(assume ⟨⟨hx, hp⟩, hr⟩, exists.intro hx ⟨hp, hr⟩)
example : (∃ x, p x q x) ↔ (∃ x, p x) (∃ x, q x) := sorry
example : (∀ x, p x) ↔ ¬ (∃ x, ¬ p x) := sorry
example : (∃ x, p x) ↔ ¬ (∀ x, ¬ p x) := sorry
example : (¬ ∃ x, p x) ↔ (∀ x, ¬ p x) := sorry
example : (¬ ∀ x, p x) ↔ (∃ x, ¬ p x) := sorry
example : (∀ x, p x → r) ↔ (∃ x, p x) → r := sorry
example (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := sorry
example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) := sorry
end ex_5
-- Exercise 6
--
-- Give a calculational proof of the theorem `log_mul` below.
section ex_6
variables log exp : real → real
variable log_exp_eq : ∀ x, log (exp x) = x
variable exp_log_eq : ∀ {x}, x > 0 → exp (log x) = x
variable exp_pos : ∀ x, exp x > 0
variable exp_add : ∀ x y, exp (x + y) = exp x * exp y
-- this ensures the assumptions are available in tactic proofs
include log_exp_eq exp_log_eq exp_pos exp_add
example (x y z : real) :
exp (x + y + z) = exp x * exp y * exp z :=
by rw [exp_add, exp_add]
example (y : real) (h : y > 0) : exp (log y) = y :=
exp_log_eq h
theorem log_mul {x y : real} (hx : x > 0) (hy : y > 0) :
log (x * y) = log x + log y :=
sorry
end ex_6
-- Exercise 7
--
-- Prove the theorem below, using only the ring properties of enumerated in
-- Section 4.2 and the theorem `sub_self.`
section ex_7
#check sub_self
example (x : Z) : x * 0 = 0 :=
sorry
end ex_7