Theorem Proving in Lean. Part of exercises 4.
parent
bb34b14294
commit
5a06def3a6
|
@ -0,0 +1,206 @@
|
|||
/- Exercises 4.6
|
||||
-
|
||||
- Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
||||
-/
|
||||
import algebra.parity
|
||||
import data.int.basic
|
||||
import data.nat.basic
|
||||
import data.real.basic
|
||||
|
||||
-- Exercise 1
|
||||
--
|
||||
-- Prove these equivalences. You should also try to understand why the reverse
|
||||
-- implication is not derivable in the last example.
|
||||
section ex_1
|
||||
|
||||
variables (α : Type*) (p q : α → Prop)
|
||||
|
||||
example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) :=
|
||||
iff.intro
|
||||
( assume h,
|
||||
and.intro
|
||||
(assume x, and.left (h x))
|
||||
(assume x, and.right (h x)))
|
||||
(assume ⟨h₁, h₂⟩ x, ⟨h₁ x, h₂ x⟩)
|
||||
|
||||
example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) :=
|
||||
assume h₁ h₂ x,
|
||||
have px : p x, from h₂ x,
|
||||
h₁ x px
|
||||
|
||||
example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x :=
|
||||
assume h₁ x,
|
||||
h₁.elim
|
||||
(assume h₂, or.inl (h₂ x))
|
||||
(assume h₂, or.inr (h₂ x))
|
||||
|
||||
-- The implication in the above example cannot be proven in the other direction
|
||||
-- because it may be the case predicate `p x` holds for certain values of `x`
|
||||
-- but not others that `q x` may hold for (and vice versa).
|
||||
|
||||
end ex_1
|
||||
|
||||
-- Exercise 2
|
||||
--
|
||||
-- It is often possible to bring a component of a formula outside a universal
|
||||
-- quantifier, when it does not depend on the quantified variable. Try proving
|
||||
-- these (one direction of the second of these requires classical logic).
|
||||
section ex_2
|
||||
|
||||
variables (α : Type*) (p q : α → Prop)
|
||||
variable r : Prop
|
||||
|
||||
example : α → ((∀ x : α, r) ↔ r) :=
|
||||
assume ha,
|
||||
iff.intro (assume h, h ha) (assume hr ha, hr)
|
||||
|
||||
-- Ensure we do not use classical logic in the first or third subproblems.
|
||||
section
|
||||
open classical
|
||||
example : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r :=
|
||||
iff.intro
|
||||
(assume h₁, or.elim (classical.em r)
|
||||
(assume hr, or.inr hr)
|
||||
(assume nr, or.inl (λ (x : α), or.elim (h₁ x)
|
||||
(assume hp, hp)
|
||||
(assume hr, absurd hr nr))))
|
||||
(assume h₁, or.elim h₁
|
||||
(assume h₂, (λ (x : α), or.inl (h₂ x)))
|
||||
(assume hr, (λ (x : α), or.inr hr)))
|
||||
end
|
||||
|
||||
example : (∀ x, r → p x) ↔ (r → ∀ x, p x) :=
|
||||
iff.intro
|
||||
(assume h₁ hr hx, h₁ hx hr)
|
||||
(assume h₁ hx hr, h₁ hr hx)
|
||||
|
||||
end ex_2
|
||||
|
||||
-- Exercise 3
|
||||
--
|
||||
-- Consider the "barber paradox," that is, the claim that in a certain town
|
||||
-- there is a (male) barber that shaves all and only the men who do not shave
|
||||
-- themselves. Prove that this is a contradiction.
|
||||
section ex_3
|
||||
|
||||
open classical
|
||||
|
||||
variables (men : Type*) (barber : men)
|
||||
variable (shaves : men → men → Prop)
|
||||
|
||||
example (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x) :
|
||||
false :=
|
||||
have b : shaves barber barber ↔ ¬ shaves barber barber, from h barber,
|
||||
or.elim (classical.em (shaves barber barber))
|
||||
(assume b', absurd b' (iff.elim_left b b'))
|
||||
(assume b', absurd (iff.elim_right b b') b')
|
||||
|
||||
end ex_3
|
||||
|
||||
-- Exercise 4
|
||||
--
|
||||
-- Remember that, without any parameters, an expression of type `Prop` is just
|
||||
-- an assertion. Fill in the definitions of `prime` and `Fermat_prime` below,
|
||||
-- and construct each of the given assertions. For example, you can say that
|
||||
-- there are infinitely many primes by asserting that for every natural number
|
||||
-- `n`, there is a prime number greater than `n.` Goldbach’s weak conjecture
|
||||
-- states that every odd number greater than `5` is the sum of three primes.
|
||||
-- Look up the definition of a Fermat prime or any of the other statements, if
|
||||
-- necessary.
|
||||
section ex_4
|
||||
|
||||
def prime (n : ℕ) : Prop :=
|
||||
n > 1 ∧ ∀ (m : ℕ), (1 < m ∧ m < n) → n % m ≠ 0
|
||||
|
||||
def infinitely_many_primes : Prop :=
|
||||
∀ (n : ℕ), (∃ (m : ℕ), m > n ∧ prime m)
|
||||
|
||||
def Fermat_prime (n : ℕ) : Prop :=
|
||||
∃ (m : ℕ), n = 2^(2^m) + 1
|
||||
|
||||
def infinitely_many_Fermat_primes : Prop :=
|
||||
∀ (n : ℕ), (∃ (m : ℕ), m > n ∧ Fermat_prime m)
|
||||
|
||||
def goldbach_conjecture : Prop :=
|
||||
∀ (n : ℕ), even n ∧ n > 2 → (∃ (x y : ℕ), prime x ∧ prime y ∧ x + y = n)
|
||||
|
||||
def Goldbach's_weak_conjecture : Prop :=
|
||||
∀ (n : ℕ), odd n ∧ n > 5 → (∃ (x y z : ℕ), prime x ∧ prime y ∧ prime z ∧ x + y + z = n)
|
||||
|
||||
def Fermat's_last_theorem : Prop :=
|
||||
∀ (n : ℕ), n > 2 → (∀ (a b c : ℕ), a^n + b^n ≠ c^n)
|
||||
|
||||
end ex_4
|
||||
|
||||
-- Exercise 5
|
||||
--
|
||||
-- Prove as many of the identities listed in Section 4.4 as you can.
|
||||
section ex_5
|
||||
|
||||
open classical
|
||||
|
||||
variables (α : Type*) (p q : α → Prop)
|
||||
variable r : Prop
|
||||
|
||||
example : (∃ x : α, r) → r :=
|
||||
assume ⟨hx, hr⟩,
|
||||
hr
|
||||
|
||||
example (a : α) : r → (∃ x : α, r) :=
|
||||
assume hr,
|
||||
exists.intro a hr
|
||||
|
||||
example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r :=
|
||||
iff.intro
|
||||
(assume ⟨hx, ⟨hp, hr⟩⟩, ⟨exists.intro hx hp, hr⟩)
|
||||
(assume ⟨⟨hx, hp⟩, hr⟩, exists.intro hx ⟨hp, hr⟩)
|
||||
|
||||
example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := sorry
|
||||
example : (∀ x, p x) ↔ ¬ (∃ x, ¬ p x) := sorry
|
||||
example : (∃ x, p x) ↔ ¬ (∀ x, ¬ p x) := sorry
|
||||
example : (¬ ∃ x, p x) ↔ (∀ x, ¬ p x) := sorry
|
||||
example : (¬ ∀ x, p x) ↔ (∃ x, ¬ p x) := sorry
|
||||
|
||||
example : (∀ x, p x → r) ↔ (∃ x, p x) → r := sorry
|
||||
example (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := sorry
|
||||
example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) := sorry
|
||||
|
||||
end ex_5
|
||||
|
||||
-- Exercise 6
|
||||
--
|
||||
-- Give a calculational proof of the theorem `log_mul` below.
|
||||
section ex_6
|
||||
|
||||
variables log exp : real → real
|
||||
variable log_exp_eq : ∀ x, log (exp x) = x
|
||||
variable exp_log_eq : ∀ {x}, x > 0 → exp (log x) = x
|
||||
variable exp_pos : ∀ x, exp x > 0
|
||||
variable exp_add : ∀ x y, exp (x + y) = exp x * exp y
|
||||
|
||||
-- this ensures the assumptions are available in tactic proofs
|
||||
include log_exp_eq exp_log_eq exp_pos exp_add
|
||||
|
||||
example (x y z : real) :
|
||||
exp (x + y + z) = exp x * exp y * exp z :=
|
||||
by rw [exp_add, exp_add]
|
||||
|
||||
example (y : real) (h : y > 0) : exp (log y) = y :=
|
||||
exp_log_eq h
|
||||
|
||||
theorem log_mul {x y : real} (hx : x > 0) (hy : y > 0) :
|
||||
log (x * y) = log x + log y :=
|
||||
sorry
|
||||
|
||||
end ex_6
|
||||
|
||||
-- Exercise 7
|
||||
--
|
||||
-- Prove the theorem below, using only the ring properties of ℤ enumerated in
|
||||
-- Section 4.2 and the theorem `sub_self.`
|
||||
section ex_7
|
||||
#check sub_self
|
||||
|
||||
example (x : Z) : x * 0 = 0 :=
|
||||
sorry
|
||||
end ex_7
|
Loading…
Reference in New Issue