Add "defined" status and distinguish Lean links.
parent
9a879c90c1
commit
53a0bd1ebc
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{../../preamble}
|
||||
|
||||
\newcommand{\lean}[1]{\href
|
||||
\newcommand{\lean}[1]{\leanref
|
||||
{./Chapter\_1\_11.html\#Apostol.Chapter\_1\_11.#1}
|
||||
{Apostol.Chapter\_1\_11.#1}}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{../../preamble}
|
||||
|
||||
\newcommand{\lean}[1]{\href
|
||||
\newcommand{\lean}[1]{\leanref
|
||||
{./Chapter\_I\_03.html\#Apostol.Chapter\_I\_03.#1}
|
||||
{Apostol.Chapter\_I\_03.#1}}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{../../preamble}
|
||||
|
||||
\newcommand{\lean}[1]{\href
|
||||
\newcommand{\lean}[1]{\leanref
|
||||
{./Chapter\_0.html\#Enderton.Chapter\_0.#1}
|
||||
{Enderton.Chapter\_0.#1}}
|
||||
|
||||
|
@ -10,7 +10,7 @@
|
|||
|
||||
\header{Useful Facts About Sets}{Herbert B. Enderton}
|
||||
|
||||
\section{\proceeding{Lemma 0A}}%
|
||||
\section*{\proceeding{Lemma 0A}}%
|
||||
\hyperlabel{sec:lemma-0a}%
|
||||
|
||||
Assume that $\langle x_1, \ldots, x_m \rangle =
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{../../../preamble}
|
||||
|
||||
\newcommand{\lean}[2]{\href{./Area.html\##1}{#2}}
|
||||
\newcommand{\lean}[2]{\leanref{./Area.html\##1}{#2}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
@ -12,7 +12,7 @@ We assume there exists a class $\mathscr{M}$ of measurable sets in the plane and
|
|||
a set function $a$, whose domain is $\mathscr{M}$, with the following
|
||||
properties:
|
||||
|
||||
\section*{\verified{Nonnegative Property}}%
|
||||
\section*{\defined{Nonnegative Property}}%
|
||||
\hyperlabel{sec:nonnegative-property}%
|
||||
|
||||
For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
|
||||
|
@ -23,7 +23,7 @@ For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Additive Property}}%
|
||||
\section*{\defined{Additive Property}}%
|
||||
\hyperlabel{sec:additive-property}%
|
||||
|
||||
If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
|
||||
|
@ -35,7 +35,7 @@ If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Difference Property}}%
|
||||
\section*{\defined{Difference Property}}%
|
||||
\hyperlabel{sec:difference-property}%
|
||||
|
||||
If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
|
||||
|
@ -47,7 +47,7 @@ If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Invariance Under Congruence}}%
|
||||
\section*{\defined{Invariance Under Congruence}}%
|
||||
\hyperlabel{sec:invariance-under-congruence}%
|
||||
|
||||
If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
|
||||
|
@ -59,7 +59,7 @@ If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Choice of Scale}}%
|
||||
\section*{\defined{Choice of Scale}}%
|
||||
\label{sec:choice-scale}
|
||||
|
||||
Every rectangle $R$ is in $\mathscr{M}$.
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{../../../preamble}
|
||||
|
||||
\newcommand{\lean}[1]{\href
|
||||
\newcommand{\lean}[1]{\leanref
|
||||
{./Arithmetic.html\#Real.Arithmetic.#1}
|
||||
{Real.Arithmetic.#1}}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\input{../../../preamble}
|
||||
|
||||
\newcommand{\lean}[1]{\href
|
||||
\newcommand{\lean}[1]{\leanref
|
||||
{./Geometric.html\#Real.Geometric.#1}
|
||||
{Real.Geometric.#1}}
|
||||
|
||||
|
|
18
README.md
18
README.md
|
@ -28,12 +28,14 @@ This assumes you have `python3` available in your `$PATH`. To change how the
|
|||
server behaves, refer to the `.env` file located in the root directory of this
|
||||
project.
|
||||
|
||||
A color/symbol code is used on generated PDF headers to indicate their status:
|
||||
A color code is used on generated PDF headers to indicate their status:
|
||||
|
||||
* Teal coloring indicates the corresponding proof is complete. That is, the
|
||||
proof has been written in TeX and also formally verified in Lean.
|
||||
* Magenta coloring indicates the corresponding proof is in progress. That is, a
|
||||
proof in both TeX and Lean have not yet been finished, but is actively being
|
||||
worked on.
|
||||
* Red coloring indicates the formal Lean proof has not yet been started. It may
|
||||
or may not also indicate the TeX proof has been written.
|
||||
* Cyan statements indicate axioms and definitions. There must exist a
|
||||
corresponding `axiom` or `def` in Lean.
|
||||
* Teal statements indicate those with complete proofs in both LaTeX *and* Lean.
|
||||
* Magenta statements indicate those that have not been completely proven in
|
||||
either LaTeX or Lean (or both). Progress is currently being made to correct
|
||||
this though.
|
||||
* Red coloring is a catch-all for all statements that don't fit the above
|
||||
categorizations. Incomplete definitions, proofs only conducted in LaTeX, etc.
|
||||
belong here.
|
||||
|
|
|
@ -16,9 +16,9 @@
|
|||
{"git":
|
||||
{"url": "https://github.com/jrpotter/bookshelf-docgen.git",
|
||||
"subDir?": null,
|
||||
"rev": "87ecc512444afd073a2b201ef25caf3ef5fc74b1",
|
||||
"rev": "699f606df8f38c8abb287277df9e79669587c2b9",
|
||||
"name": "doc-gen4",
|
||||
"inputRev?": "87ecc512444afd073a2b201ef25caf3ef5fc74b1"}},
|
||||
"inputRev?": "699f606df8f38c8abb287277df9e79669587c2b9"}},
|
||||
{"git":
|
||||
{"url": "https://github.com/mhuisi/lean4-cli",
|
||||
"subDir?": null,
|
||||
|
|
|
@ -12,7 +12,7 @@ require std4 from git
|
|||
"6006307d2ceb8743fea7e00ba0036af8654d0347"
|
||||
require «doc-gen4» from git
|
||||
"https://github.com/jrpotter/bookshelf-docgen.git" @
|
||||
"87ecc512444afd073a2b201ef25caf3ef5fc74b1"
|
||||
"699f606df8f38c8abb287277df9e79669587c2b9"
|
||||
|
||||
@[default_target]
|
||||
lean_lib «Bookshelf» {
|
||||
|
|
26
preamble.tex
26
preamble.tex
|
@ -15,6 +15,7 @@
|
|||
% ========================================
|
||||
|
||||
\hypersetup{colorlinks=true, urlcolor=blue}
|
||||
\newcommand{\leanref}[2]{\color{blue}$\pmb{\exists}\;{-}\;$\href{#1}{#2}}
|
||||
\newcommand{\hyperlabel}[1]{%
|
||||
\label{#1}%
|
||||
\hypertarget{#1}{}}
|
||||
|
@ -39,19 +40,32 @@
|
|||
\begin{center}
|
||||
\doublebox{
|
||||
\begin{minipage}{0.95\textwidth}
|
||||
\vspace{2pt}
|
||||
\hl{Note:} #1
|
||||
\vspace{2pt}
|
||||
\vspace{2pt}
|
||||
\hl{Note:} #1
|
||||
\vspace{2pt}
|
||||
\end{minipage}}
|
||||
\end{center}}
|
||||
|
||||
% Status of a proof. A statement/theorem is verified if both a LaTeX proof
|
||||
% and a corresponding Lean proof has been written. If a Lean proof is in
|
||||
% progress, it's in a "proceeding" state. Otherwise it is unverified.
|
||||
% ========================================
|
||||
% Status
|
||||
% ========================================
|
||||
|
||||
% Indicates a statement corresponds to an axiom or definition. There must exist
|
||||
% a corresponding `axiom` or `def` in Lean.
|
||||
\DeclareRobustCommand{\defined}[1]{%
|
||||
\texorpdfstring{\color{cyan}\faParagraph\ #1}{#1}}
|
||||
|
||||
% Indicates a statement has a complete proof in both LaTeX *and* Lean.
|
||||
\DeclareRobustCommand{\verified}[1]{%
|
||||
\texorpdfstring{\color{teal}\faCheckCircle\ #1}{#1}}
|
||||
|
||||
% Indicates a statement has not been completely proven in either LaTeX or
|
||||
% Lean (or both). Progress is currently being made to correct this though.
|
||||
\DeclareRobustCommand{\proceeding}[1]{%
|
||||
\texorpdfstring{\color{magenta}\faDotCircle[regular]\ #1}{#1}}
|
||||
|
||||
% A catch-all status for anything that doesn't fit the above categories.
|
||||
% Incomplete definitions, proofs only conducted in LaTeX, etc. belong here.
|
||||
\DeclareRobustCommand{\unverified}[1]{%
|
||||
\texorpdfstring{\color{red}\faExclamationCircle\ #1}{#1}}
|
||||
|
||||
|
|
Loading…
Reference in New Issue