diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index 17afa85..ad31341 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -6149,7 +6149,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. natural number is a transitive set. \paragraph{(i)}% - \label{par:theorem-4f-i} + \hyperlabel{par:theorem-4f-i} First, $\emptyset \in T$ since it vacuously holds that a member of a member of $\emptyset$ is itself a member of $\emptyset$. @@ -6171,7 +6171,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \end{proof} \subsection{\unverified{Theorem 4G}}% -\label{sub:theorem-4g} +\hyperlabel{sub:theorem-4g} \begin{theorem}[4G] @@ -6186,7 +6186,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. member of a natural number is itself a natural number. \paragraph{(i)}% - \label{par:theorem-4g-i} + \hyperlabel{par:theorem-4g-i} First, it vacuously holds that $\emptyset \in T$. Next, let $n \in T$. @@ -6210,6 +6210,46 @@ Show that $<_L$ is a linear ordering on $A \times B$. \end{proof} +\section{Recursion on \texorpdfstring{$\omega$}{the Natural Numbers}}% +\hyperlabel{sec:recursion-natural-numbers} + +\subsection{\sorry{ + Recursion Theorem on \texorpdfstring{$\omega$}{the Natural Numbers}}}% +\hyperlabel{sub:recursion-theorem-natural-numbers} + +\begin{theorem} + + Let $A$ be a set, $a \in A$, and $F \colon A \rightarrow A$. + Then there exists a unique function $h \colon \omega \rightarrow A$ such that + $$h(0) = a,$$ and for every $n \in \omega$, $$h(n^+) = F(h(n)).$$ + +\end{theorem} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{Theorem 4H}}% +\hyperlabel{sub:theorem-4h} + +\begin{theorem}[4H] + + Let $\langle N, S, e \rangle$ be a Peano system. + Then $\langle \omega, \sigma, 0 \rangle$ is isomorphic to + $\langle N, S, e \rangle$, i.e., there is a function $h$ mapping $\omega$ + one-to-one onto $N$ in a way that preserves the successor operation + $$h(\sigma(n)) = S(h(n))$$ and the zero element $$h(0) = e.$$ + +\end{theorem} + +\begin{proof} + + TODO + +\end{proof} + \section{Exercises 4}% \hyperlabel{sec:exercises-4} @@ -6359,4 +6399,99 @@ Prove the converse to \nameref{sub:theorem-4e}: If \end{proof} +\subsection{\sorry{Exercise 4.7}}% +\hyperlabel{sub:exercise-4.7} + +Complete part 4 of the proof of the recursion theorem on $\omega$. + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{Exercise 4.8}}% +\hyperlabel{sub:exercise-4.8} + +Let $f$ be a one-to-one function from $A$ into $A$, and assume that + $c \in A - \ran{f}$. +Define $h \colon \omega \rightarrow A$ by recursion: + \begin{align*} + h(0) & = c, \\ + h(n^+) & = f(h(n)). + \end{align*} + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{Exercise 4.9}}% +\hyperlabel{sub:exercise-4.9} + +Let $f$ be a function from $B$ into $B$, and assume that $A \subseteq B$. +We have two possible methods for constructing the "closure" $C$ of $A$ under + $f$. +First define $C^*$ to be the intersection of the closed supersets of $A$: + $$C^* = \bigcap\{X \mid + A \subseteq X \subseteq B \land \img{f}{X} \subseteq X\}.$$ +Alternatively, we could apply the recursion theorem to obtain the function $h$ + for which + \begin{align*} + h(0) & = A, \\ + h(n^+) & = h(n) \cup \img{f}{h(n)}. + \end{align*} +Clearly $h(0) \subseteq h(1) \subseteq \cdots$; define $C_*$ to be + $\bigcup\ran{h}$; in other words $$C_* = \bigcup_{i \in \omega} h(i).$$ +Show that $C^+ = C_*$. +[\textit{Suggestion}: +To show that $C^* \subseteq C_*$, show that $\img{f}{C_*} \subseteq C_*$. +To show that $C_* \subseteq C^*$, use induction to show that + $h(n) \subseteq C^*$.] + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{Exercise 4.10}}% +\hyperlabel{sub:exercise-4.10} + +In Exercise 9, assume that $B$ is the set of real numbers, $f(x) = x^2$, and $A$ + is the closed interval $\icc{\frac{1}{2}}{1}$. +What is the set called $C^*$ and $C_*$? + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{Exercise 4.11}}% +\hyperlabel{sub:exercise-4.11} + +In Exercise 9, assume that $B$ is the set of real numbers, $f(x) = x - 1$, and + $A = \{0\}$. +What is the set called $C^*$ and $C_*$? + +\begin{proof} + + TODO + +\end{proof} + +\subsection{\sorry{Exercise 4.12}}% +\hyperlabel{sub:exercise-4.12} + +Formulate an analogue to Exercise 9 for a function + $f \colon B \times B \rightarrow B$. + +\begin{proof} + + TODO + +\end{proof} + \end{document}