Apostol. Update coloring of definitions in the reference section.
parent
ec53cdd710
commit
51e415a87f
|
@ -65,7 +65,7 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\pending{Integrable}}%
|
\section{\defined{Integrable}}%
|
||||||
\hyperlabel{ref:integrable}
|
\hyperlabel{ref:integrable}
|
||||||
|
|
||||||
Let $f$ be a function defined and bounded on $[a, b]$.
|
Let $f$ be a function defined and bounded on $[a, b]$.
|
||||||
|
@ -74,7 +74,7 @@ $f$ is said to be \textbf{integrable} if there exists one and only one number
|
||||||
If $f$ is integrable on $[a, b]$, we say that the integral
|
If $f$ is integrable on $[a, b]$, we say that the integral
|
||||||
$\int_a^b f(x) \mathop{dx}$ \textbf{exists}.
|
$\int_a^b f(x) \mathop{dx}$ \textbf{exists}.
|
||||||
|
|
||||||
\section{\pending{Integral of a Bounded Function}}%
|
\section{\defined{Integral of a Bounded Function}}%
|
||||||
\hyperlabel{ref:integral-bounded-function}
|
\hyperlabel{ref:integral-bounded-function}
|
||||||
|
|
||||||
Let $f$ be a function defined and bounded on $[a, b]$.
|
Let $f$ be a function defined and bounded on $[a, b]$.
|
||||||
|
@ -102,7 +102,7 @@ The function $f$ is called the \textbf{integrand}, the numbers $a$ and $b$ are
|
||||||
called the \textbf{limits of integration}, and the interval $[a, b]$ the
|
called the \textbf{limits of integration}, and the interval $[a, b]$ the
|
||||||
\textbf{interval of integration}.
|
\textbf{interval of integration}.
|
||||||
|
|
||||||
\section{\pending{Integral of a Step Function}}%
|
\section{\defined{Integral of a Step Function}}%
|
||||||
\hyperlabel{ref:integral-step-function}
|
\hyperlabel{ref:integral-step-function}
|
||||||
|
|
||||||
Let $s$ be a \nameref{ref:step-function} defined on $[a, b]$, and let
|
Let $s$ be a \nameref{ref:step-function} defined on $[a, b]$, and let
|
||||||
|
@ -118,7 +118,7 @@ The \textbf{integral of $s$ from $a$ to $b$}, denoted by the symbol
|
||||||
If $a < b$, we define $\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}$.
|
If $a < b$, we define $\int_b^a s(x) \mathop{dx} = -\int_a^b s(x) \mathop{dx}$.
|
||||||
We also define $\int_a^a s(x) \mathop{dx} = 0$.
|
We also define $\int_a^a s(x) \mathop{dx} = 0$.
|
||||||
|
|
||||||
\section{\pending{Lower Integral}}%
|
\section{\defined{Lower Integral}}%
|
||||||
\hyperlabel{ref:lower-integral}
|
\hyperlabel{ref:lower-integral}
|
||||||
|
|
||||||
Let $f$ be a function bounded on $[a, b]$ and $S$ denote the set of numbers
|
Let $f$ be a function bounded on $[a, b]$ and $S$ denote the set of numbers
|
||||||
|
@ -128,7 +128,7 @@ That is, let $$S = \left\{ \int_a^b s(x) \mathop{dx} : s \leq f \right\}.$$
|
||||||
The number $\sup{S}$ is called the \textbf{lower integral of $f$}.
|
The number $\sup{S}$ is called the \textbf{lower integral of $f$}.
|
||||||
It is denoted as $\ubar{I}(f)$.
|
It is denoted as $\ubar{I}(f)$.
|
||||||
|
|
||||||
\section{\pending{Monotonic}}%
|
\section{\defined{Monotonic}}%
|
||||||
\hyperlabel{ref:monotonic}
|
\hyperlabel{ref:monotonic}
|
||||||
|
|
||||||
A function $f$ is called \textbf{monotonic} on set $S$ if it is increasing on
|
A function $f$ is called \textbf{monotonic} on set $S$ if it is increasing on
|
||||||
|
@ -164,7 +164,7 @@ A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\pending{Refinement}}%
|
\section{\defined{Refinement}}%
|
||||||
\hyperlabel{ref:refinement}
|
\hyperlabel{ref:refinement}
|
||||||
|
|
||||||
Let $P$ be a \nameref{ref:partition} of closed interval $[a, b]$.
|
Let $P$ be a \nameref{ref:partition} of closed interval $[a, b]$.
|
||||||
|
@ -213,7 +213,7 @@ Such a number $B$ is also known as the \textbf{least upper bound}.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\pending{Upper Integral}}%
|
\section{\defined{Upper Integral}}%
|
||||||
\hyperlabel{ref:upper-integral}
|
\hyperlabel{ref:upper-integral}
|
||||||
|
|
||||||
Let $f$ be a function bounded on $[a, b]$ and $T$ denote the set of numbers
|
Let $f$ be a function bounded on $[a, b]$ and $T$ denote the set of numbers
|
||||||
|
|
Loading…
Reference in New Issue