Enderton. Theorem 3A.

finite-set-exercises
Joshua Potter 2023-06-06 20:16:06 -06:00
parent 079710d40a
commit 49bd4871fe
6 changed files with 229 additions and 1 deletions

View File

@ -45,6 +45,18 @@ If two sets have exactly the same members, then they are equal:
\end{axiom} \end{axiom}
\section{\defined{Ordered Pair}}%
\label{ref:ordered-pair}
For any sets $u$ and $v$, the \textbf{ordered pair} $\left< u, v \right>$ is
the set $\{\{u\}, \{u, v\}\}$.
\begin{definition}
\lean*{Common/Set/OrderedPair}{OrderedPair}
\end{definition}
\section{\defined{Pair Set}}% \section{\defined{Pair Set}}%
\label{ref:pair-set} \label{ref:pair-set}
@ -2211,4 +2223,85 @@ If not, then under what conditions does equality hold?
\end{proof} \end{proof}
\chapter{Relations and Functions}%
\label{chap:relations-functions}
\section{Ordered Pairs}%
\label{sec:ordered-pairs}
\subsection{\verified{Theorem 3A}}%
\label{sub:theorem-3a}
\begin{theorem}
For any sets $x$, $y$, $u$, and $v$,
\begin{equation}
\label{sub:theorem-3a-eq1}
\left< u, v \right> = \left< x, y \right> \iff u = x \land v = y.
\end{equation}
\end{theorem}
\begin{proof}
\lean{Common/Set/OrderedPair}{Set.OrderedPair.ext\_iff}
Let $x$, $y$, $u$, and $v$ be arbitrary sets.
\paragraph{($\Leftarrow$)}%
This follows trivially.
\paragraph{($\Rightarrow$)}%
Suppose $\left< u, v \right> = \left< x, y \right>$.
Then, by definition of an \nameref{ref:ordered-pair},
\begin{equation}
\label{sub:theorem-3a-eq2}
\{\{u\}, \{u, v\}\} = \{\{x\}, \{x, y\}\}.
\end{equation}
By the \nameref{ref:extensionality-axiom}, it follows
$\{u\} \in \{\{x\}, \{x, y\}\}$ and
$\{u, v\} \in \{\{x\}, \{x, y\}\}$.
That is,
$$\{u\} = \{x\} \quad\text{or}\quad \{u\} = \{x, y\}$$
and
$$\{u, v\} = \{x\} \quad\text{or}\quad \{u, v\} = \{x, y\}.$$
There are 4 cases to consider:
\paragraph{Case 1}%
Suppose $\{u\} = \{x\}$ and $\{u, v\} = \{x\}$.
The former identity implies $u = x$.
The latter identity implies $u = v = x$.
Then \eqref{sub:theorem-3a-eq2} simplifies to
$$\{\{u\}\} = \{\{x\}, \{x, y\}\},$$ meaning $x = y$.
Thus $v = y$ as well.
\paragraph{Case 2}%
Suppose $\{u\} = \{x\}$ and $\{u, v\} = \{x, y\}$.
The former identity implies $u = x$.
Substituting into the latter identity yields $\{u, v\} = \{u, y\}$.
This holds if and only if $v = y$.
\paragraph{Case 3}%
Suppose $\{u\} = \{x, y\}$ and $\{u, v\} = \{x\}$.
The former identity implies $x = y = u$.
Substituting into the latter yields $\{u, v\} = \{u\}$.
Thus $u = v$ which in turn implies $v = y$.
\paragraph{Case 4}%
Suppose $\{u\} = \{x, y\}$ and $\{u, v\} = \{x, y\}$.
The former identity implies $x = y = u$.
Substituting into the latter yields $\{u, v\} = \{u\}$.
This implies $v = u$ which in turn implies $v = y$.
\paragraph{Conclusion}%
These cases are exhaustive and each implies that $u = x$ and $v = y$.
\end{proof}
\end{document} \end{document}

View File

@ -1,6 +1,5 @@
import Mathlib.Data.Set.Basic import Mathlib.Data.Set.Basic
import Mathlib.Data.Set.Lattice import Mathlib.Data.Set.Lattice
import Mathlib.Tactic.LibrarySearch
import Bookshelf.Enderton.Set.Chapter_1 import Bookshelf.Enderton.Set.Chapter_1
import Common.Logic.Basic import Common.Logic.Basic

View File

@ -0,0 +1,10 @@
import Mathlib.Data.Set.Basic
/-! # Enderton.Chapter_3
Relations and Functions
-/
namespace Enderton.Set.Chapter_3
end Enderton.Set.Chapter_3

View File

@ -1,2 +1,4 @@
import Common.Set.Basic import Common.Set.Basic
import Common.Set.Interval
import Common.Set.OrderedPair
import Common.Set.Partition import Common.Set.Partition

View File

@ -44,6 +44,37 @@ It returns `1` if the specified input belongs to `S` and `0` otherwise.
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat := def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
if x ∈ S then 1 else 0 if x ∈ S then 1 else 0
/-! ## Equality -/
/--
If `{x, y} = {x}` then `x = y`.
-/
theorem pair_eq_singleton_mem_imp_eq_self {x y : α}
(h : {x, y} = ({x} : Set α)) : y = x := by
rw [Set.ext_iff] at h
have := h y
simp at this
exact this
/--
If `{x, y} = {z}` then `x = y = z`.
-/
theorem pair_eq_singleton_mem_imp_eq_all {x y z : α}
(h : {x, y} = ({z} : Set α)) : x = z ∧ y = z := by
have h' := h
rw [Set.ext_iff] at h'
have hz := h' z
simp at hz
apply Or.elim hz
· intro hzx
rw [← hzx] at h
have := pair_eq_singleton_mem_imp_eq_self h
exact ⟨hzx.symm, this⟩
· intro hzy
rw [← hzy, Set.pair_comm] at h
have := pair_eq_singleton_mem_imp_eq_self h
exact ⟨this, hzy.symm⟩
/-! ## Subsets -/ /-! ## Subsets -/
/-- /--

View File

@ -0,0 +1,93 @@
import Mathlib.Data.Set.Basic
import Common.Logic.Basic
import Common.Set.Basic
namespace Set
/--
Kazimierz Kuratowski's definition of an ordered pair.
-/
def OrderedPair (x y : α) : Set (Set α) := {{x}, {x, y}}
namespace OrderedPair
theorem ext_iff {x y u v : α}
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
unfold OrderedPair
apply Iff.intro
· intro h
have h' := h
rw [Set.ext_iff] at h'
have hu := h' {u}
have huv := h' {u, v}
simp only [mem_singleton_iff, mem_insert_iff, true_or, iff_true] at hu
simp only [mem_singleton_iff, mem_insert_iff, or_true, iff_true] at huv
apply Or.elim hu
· apply Or.elim huv
· -- #### Case 1
-- `{u} = {x}` and `{u, v} = {x}`.
intro huv_x hu_x
rw [singleton_eq_singleton_iff] at hu_x
rw [hu_x] at huv_x
have hx_v := pair_eq_singleton_mem_imp_eq_self huv_x
rw [hu_x, hx_v] at h
simp only [mem_singleton_iff, insert_eq_of_mem] at h
have := pair_eq_singleton_mem_imp_eq_self $
pair_eq_singleton_mem_imp_eq_self h
rw [← hx_v] at this
exact ⟨hu_x.symm, this⟩
· -- #### Case 2
-- `{u} = {x}` and `{u, v} = {x, y}`.
intro huv_xy hu_x
rw [singleton_eq_singleton_iff] at hu_x
rw [hu_x] at huv_xy
by_cases hx_v : x = v
· rw [hx_v] at huv_xy
simp at huv_xy
have := pair_eq_singleton_mem_imp_eq_self huv_xy.symm
exact ⟨hu_x.symm, this⟩
· rw [Set.ext_iff] at huv_xy
have := huv_xy v
simp at this
apply Or.elim this
· intro hv_x
rw [hu_x, ← hv_x] at h
simp at h
have := pair_eq_singleton_mem_imp_eq_self $
pair_eq_singleton_mem_imp_eq_self h
exact ⟨hu_x.symm, this⟩
· intro hv_y
exact ⟨hu_x.symm, hv_y.symm⟩
· apply Or.elim huv
· -- #### Case 3
-- `{u} = {x, y}` and `{u, v} = {x}`.
intro huv_x hu_xy
rw [Set.ext_iff] at huv_x
have hu_x := huv_x u
have hv_x := huv_x v
simp only [mem_singleton_iff, mem_insert_iff, true_or, true_iff] at hu_x
simp only [mem_singleton_iff, mem_insert_iff, or_true, true_iff] at hv_x
rw [← hu_x] at hu_xy
have := pair_eq_singleton_mem_imp_eq_self hu_xy.symm
rw [hu_x, ← hv_x] at this
exact ⟨hu_x.symm, this⟩
· -- #### Case 4
-- `{u} = {x, y}` and `{u, v} = {x, y}`.
intro huv_xy hu_xy
rw [Set.ext_iff] at hu_xy
have hx_u := hu_xy x
have hy_u := hu_xy y
simp only [mem_singleton_iff, mem_insert_iff, true_or, iff_true] at hx_u
simp only [mem_singleton_iff, mem_insert_iff, or_true, iff_true] at hy_u
rw [hx_u, hy_u] at huv_xy
simp only [mem_singleton_iff, insert_eq_of_mem] at huv_xy
have := pair_eq_singleton_mem_imp_eq_self huv_xy
rw [← this] at hy_u
exact ⟨hx_u, hy_u⟩
· intro h
rw [h.left, h.right]
end OrderedPair
end Set