I_3_11 Apostol. Tex proof.
Also nest paragraphs in LaTeX structures.finite-set-exercises
parent
a2b138233a
commit
418103eb8c
|
@ -1,4 +1,5 @@
|
|||
\documentclass{article}
|
||||
\usepackage[shortlabels]{enumitem}
|
||||
|
||||
\input{../../common/preamble}
|
||||
|
||||
|
@ -6,8 +7,8 @@
|
|||
|
||||
\begin{xtheorem}{I.27}
|
||||
|
||||
Every nonempty set $S$ that is bounded below has a greatest lower bound;
|
||||
that is, there is a real number $L$ such that $L = \inf{S}$.
|
||||
Every nonempty set $S$ that is bounded below has a greatest lower bound; that
|
||||
is, there is a real number $L$ such that $L = \inf{S}$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
|
@ -31,7 +32,8 @@ For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
|||
|
||||
\begin{xtheorem}{I.30}[Archimedean Property of the Reals]
|
||||
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
|
||||
integer $n$ such that $nx > y$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
|
@ -55,4 +57,27 @@ for every integer $n \geq 1$, then $x = a$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.32}
|
||||
|
||||
Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
||||
\begin{enumerate}[(a)]
|
||||
\item If $S$ has a supremum, then for some $x$ in $S$ we have
|
||||
$$x > \sup{S} - h.$$
|
||||
\item If $S$ has an infimum, then for some $x$ in $S$ we have
|
||||
$$x < \inf{S} + h.$$
|
||||
\end{enumerate}
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\ % Force space prior to *Proof.*
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.arb_close_to_sup}
|
||||
\item \href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.arb_close_to_inf}
|
||||
\end{enumerate}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in New Issue