Add concept of glossary.
parent
da7f00753b
commit
3fc293579d
|
@ -0,0 +1,57 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../../preamble}
|
||||
|
||||
\newcommand{\lean}[2]{\leanref{../../#1.html\##2}{#2}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\tableofcontents
|
||||
|
||||
\section{The Concepts of Integral Calculus}%
|
||||
\label{sec:concepts-integral-calculus}
|
||||
|
||||
\subsection{\defined{Partition}}%
|
||||
\label{sub:partition}
|
||||
|
||||
Let $[a, b]$ be a closed interval decomposed into $n$ subintervals by inserting
|
||||
$n - 1$ points of subdivision, say $x_1$, $x_2$, $\ldots$, $x_{n-1}$, subject
|
||||
only to the restriction
|
||||
\begin{equation}
|
||||
\label{sec:partition-eq1}
|
||||
a < x_1 < x_2 < \cdots < x_{n-1} < b.
|
||||
\end{equation}
|
||||
It is convenient to denote the point $a$ itself by $x_0$ and the point $b$ by
|
||||
$x_n$.
|
||||
A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
||||
\textbf{partition} $P$ of $[a, b]$, and we use the symbol
|
||||
$$P = \{x_0, x_1, \ldots, x_n\}$$ to designate this partition.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean{Common/Set/Intervals/Partition}{Set.Intervals.Partition}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\subsection{\defined{Step Function}}%
|
||||
\label{sub:step-function}
|
||||
|
||||
A function $s$, whose domain is a closed interval $[a, b]$, is called a step
|
||||
function if there is a \nameref{sub:partition} $P = \{x_0, x_1, \ldots, x_n\}$
|
||||
of $[a b]$ such that $s$ is constant on each open subinterval of $P$.
|
||||
That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
||||
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
|
||||
Step functions are sometimes called piecewise constant functions.
|
||||
|
||||
\vspace{8pt}
|
||||
\noindent
|
||||
\textit{Note:} At each of the endpoints $x_{k-1}$ and $x_k$ the function must
|
||||
have some well-defined value, but this need not be the same as $s_k$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean{Common/Set/Intervals/StepFunction}{Set.Intervals.StepFunction}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\end{document}
|
|
@ -69,6 +69,12 @@ theorem right_ge_mem_self [Preorder α] [@DecidableRel α LT.lt]
|
|||
(p : Partition α) : ∀ x ∈ p, x ≤ p.b := by
|
||||
sorry
|
||||
|
||||
/--
|
||||
The closed interval determined by the endpoints of the `Partition`.
|
||||
-/
|
||||
abbrev toIcc [Preorder α] [@DecidableRel α LT.lt]
|
||||
(p : Partition α) := Set.Icc p.a p.b
|
||||
|
||||
/-
|
||||
Return the closed subintervals determined by the `Partition`.
|
||||
-/
|
||||
|
@ -76,6 +82,12 @@ def closedSubintervals [Preorder α] [@DecidableRel α LT.lt]
|
|||
(p : Partition α) : List (Set α) :=
|
||||
p.toList.pairwise (fun x₁ x₂ => Icc x₁ x₂)
|
||||
|
||||
/--
|
||||
The open interval determined by the endpoints of the `Partition`.
|
||||
-/
|
||||
abbrev toIoo [Preorder α] [@DecidableRel α LT.lt]
|
||||
(p : Partition α) := Set.Ioo p.a p.b
|
||||
|
||||
/-
|
||||
Return the open subintervals determined by the `Partition`.
|
||||
-/
|
||||
|
|
|
@ -8,20 +8,19 @@ Characterization of step functions.
|
|||
|
||||
namespace Set.Intervals
|
||||
|
||||
open Partition
|
||||
|
||||
/--
|
||||
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
|
||||
if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
|
||||
constant on each open subinterval of `P`.
|
||||
-/
|
||||
structure StepFunction (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where
|
||||
/- A partition of some closed interval `[a, b]`. -/
|
||||
partition : Partition α
|
||||
/-- A function whose domain is a closed interval `[a, b]`. -/
|
||||
function : ∀ x ∈ Icc partition.a partition.b, α
|
||||
/-- Ensure the function is constant on each open subinterval of `p`. -/
|
||||
p : Partition α
|
||||
toFun : ∀ x ∈ p.toIcc, α
|
||||
const_open_subintervals :
|
||||
∀ (hI : I ∈ partition.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I),
|
||||
function y (Partition.mem_open_subinterval_mem_closed_interval hI hy) = c
|
||||
∀ (hI : I ∈ p.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I),
|
||||
toFun y (mem_open_subinterval_mem_closed_interval hI hy) = c
|
||||
|
||||
namespace StepFunction
|
||||
|
||||
|
|
|
@ -37,13 +37,20 @@ def index : BaseHtmlM Html := do templateExtends (baseHtml "Index") <|
|
|||
status:
|
||||
<ul>
|
||||
<li>
|
||||
<span style="color:teal">Teal statements </span> are those that
|
||||
have been proven or encoded in both LaTeX and Lean.
|
||||
<span style="color:darkgray">Dark gray statements </span> are
|
||||
reserved for definitions and axioms that have been encoded in both
|
||||
LaTeX and Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:magenta">Magenta statements </span> are those
|
||||
that have been proven or encoded in LaTeX but not yet verified in
|
||||
Lean.
|
||||
<span style="color:teal">Teal statements </span> are reserved for
|
||||
statements, theorems, lemmas, etc. that have been proven in both
|
||||
LaTeX and Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:magenta">Magenta statements </span> are reserved
|
||||
for definitions, axioms, statements, theorems, lemmas, etc. that
|
||||
have been proven or encoded in LaTeX but not yet proven or encoded
|
||||
in Lean.
|
||||
</li>
|
||||
<li>
|
||||
<span style="color:red">Red </span> serves as a catch-all for all
|
||||
|
|
17
preamble.tex
17
preamble.tex
|
@ -14,8 +14,8 @@
|
|||
% Linking
|
||||
% ========================================
|
||||
|
||||
\hypersetup{colorlinks=true, urlcolor=blue}
|
||||
\newcommand{\leanref}[2]{{\color{blue}$\pmb{\exists}\;{-}\;$}\href{#1}{#2}}
|
||||
\hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue}
|
||||
\newcommand{\leanref}[2]{\textcolor{blue}{$\pmb{\exists}\;{-}\;$}\href{#1}{#2}}
|
||||
|
||||
% ========================================
|
||||
% Environments
|
||||
|
@ -24,6 +24,9 @@
|
|||
\newenvironment{axiom}{%
|
||||
\paragraph{\normalfont\normalsize\textit{Axiom.}}}
|
||||
{\hfill$\square$}
|
||||
\newenvironment{definition}{%
|
||||
\paragraph{\normalfont\normalsize\textit{Definition.}}}
|
||||
{\hfill$\square$}
|
||||
\newcommand{\divider}{%
|
||||
\vspace{10pt}
|
||||
\hrule
|
||||
|
@ -47,20 +50,12 @@
|
|||
% Status
|
||||
% ========================================
|
||||
|
||||
% Used for statements encoded in both LaTeX and Lean.
|
||||
\DeclareRobustCommand{\defined}[1]{%
|
||||
\texorpdfstring{\color{teal}\faParagraph\ #1}{#1}}
|
||||
|
||||
% Used for statements proven in both LaTeX and Lean.
|
||||
\texorpdfstring{\color{darkgray}\faParagraph\ #1}{#1}}
|
||||
\DeclareRobustCommand{\verified}[1]{%
|
||||
\texorpdfstring{\color{teal}\faCheckCircle\ #1}{#1}}
|
||||
|
||||
% Used for statements proven or encoded in LaTeX but not yet in Lean.
|
||||
\DeclareRobustCommand{\partial}[1]{%
|
||||
\texorpdfstring{\color{magenta}\faPencil*\ #1}{#1}}
|
||||
|
||||
% A catch-all for anything that doesn't fit the above categories. Incomplete
|
||||
% definitions, statements without proof, etc. belong here.
|
||||
\DeclareRobustCommand{\unverified}[1]{%
|
||||
\texorpdfstring{\color{red}\faExclamationCircle\ #1}{#1}}
|
||||
|
||||
|
|
Loading…
Reference in New Issue