diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index dc01885..751653f 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -117,6 +117,14 @@ \lean{Mathlib/Init/Set}{Set.emptyCollection} +\section{\defined{Equinumerous}}% +\hyperlabel{ref:equinumerous} + +A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and + only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$. + + \lean*{Mathlib/Init/Function}{Function.Bijective} + \section{\defined{Equivalence Class}}% \hyperlabel{ref:equivalence-class} @@ -169,6 +177,14 @@ \lean{Bookshelf/Enderton/Set/Relation}{Set.Relation.fld} +\section{\defined{Finite Set}}% +\hyperlabel{ref:finite-set} + + A set is \textbf{finite} if and only if it is \nameref{ref:equinumerous} to a + \nameref{ref:natural-number}. + + \lean{Mathlib/Data/Finset/Basic}{Finset} + \section{\defined{Function}}% \hyperlabel{ref:function} @@ -224,6 +240,12 @@ respectively. \end{note} +\section{\defined{Infinite Set}}% +\hyperlabel{ref:infinite-set} + + A set is \textbf{infinite} if and only if it is not a + \nameref{ref:finite-set}. + \section{\defined{Infinity Axiom}}% \hyperlabel{ref:infinity-axiom} @@ -8305,4 +8327,210 @@ TODO \end{proof} +\setcounter{chapter}{5} +\chapter{Cardinal Numbers and the Axiom of Choice}% +\hyperlabel{chap:cardinal-numbers-axiom-choice} + +\section{Equinumerosity}% +\hyperlabel{sec:equinumerosity} + +\subsection{\sorry{Theorem 6A}}% +\hyperlabel{sub:theorem-6a} + + \begin{theorem}[6A] + For any sets $A$, $B$, and $C$, + \begin{enumerate}[(a)] + \item $A \approx A$. + \item If $A \approx B$, then $B \approx A$. + \item If $A \approx B$ and $B \approx C$, then $A \approx C$. + \end{enumerate} + \end{theorem} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Theorem 6B}}% +\hyperlabel{sub:theorem-6b} + + \begin{theorem}[6B] + No set is equinumerous to its powerset. + \end{theorem} + + \begin{proof} + TODO + \end{proof} + +\section{Finite Sets}% +\hyperlabel{sec:finite-sets} + +\subsection{\sorry{Pigeonhole Principle}}% +\hyperlabel{sub:pigeonhole-principle} + + \begin{theorem} + No natural number is equinumerous to a proper subset of itself. + \end{theorem} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Corollary 6C}}% +\hyperlabel{sub:corollary-6c} + + \begin{corollary}[6C] + No finite set is equinumerous to a proper subset of itself. + \end{corollary} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Corollary 6D}}% +\hyperlabel{sub:corollary-6d} + + \begin{corollary}[6D] + \begin{enumerate}[(a)] + \item Any set equinumerous to a proper subset of itself is infinite. + \item The set $\omega$ is infinite. + \end{enumerate} + \end{corollary} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Corollary 6E}}% +\hyperlabel{sub:corollary-6e} + + \begin{corollary}[6E] + Any finite set is equinumerous to a unique natural number. + \end{corollary} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Lemma 6F}}% +\hyperlabel{sub:lemma-6f} + + \begin{lemma}[6F] + If $C$ is a proper subset of a natural number $n$, then $C \approx m$ for + some $m$ less than $n$. + \end{lemma} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Corollary 6G}}% +\hyperlabel{sub:corollary-6g} + + \begin{corollary}[6G] + Any subset of a finite set is finite. + \end{corollary} + + \begin{proof} + TODO + \end{proof} + +\section{Exercises 6}% +\hyperlabel{sec:exercises-6} + +\subsection{\sorry{Exercise 6.1}}% +\hyperlabel{sub:exercise-6-1} + + Show that the equation $$f(m, n) = 2^m(2n + 1) - 1$$ defines a one-one-one + correspondence between $\omega \times \omega$ and $\omega$. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.2}}% +\hyperlabel{sub:exercise-6-2} + + Show that in Fig. 32 we have: + \begin{align*} + J(m, n) + & = [1 + 2 + \cdots + (m + n)] + m \\ + & = \frac{1}{2}[(m + n)^2 + 3m + n]. + \end{align*} + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.3}}% +\hyperlabel{sub:exercise-6-3} + + Find a one-to-one correspondence between the open unit interval $\ioo{0}{1}$ + and $\mathbb{R}$ that takes rationals to rationals and irrationals to + irrationals. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.4}}% +\hyperlabel{sub:exercise-6-4} + + Construct a one-to-one correspondence between the closed unit interval + $$\icc{0}{1} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$$ + and the open unit interval $\ioo{0}{1}$. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.5}}% +\hyperlabel{sub:exercise-6-5} + + Prove \nameref{sub:theorem-6a}. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.6}}% +\hyperlabel{sub:exercise-6-6} + + Let $\kappa$ be a nonzero cardinal number. + Show there does not exist a set to which every set of cardinality $\kappa$ + belongs. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.7}}% +\hyperlabel{sub:exercise-6-7} + + Assume that $A$ is finite and $f \colon A \rightarrow A$. + Show that $f$ is one-to-one iff $\ran{f} = A$. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.8}}% +\hyperlabel{sub:exercise-6-8} + + Prove that the union of two finite sets is finite, without any use of + arithmetic. + + \begin{proof} + TODO + \end{proof} + +\subsection{\sorry{Exercise 6.9}}% +\hyperlabel{sub:exercise-6-9} + + Prove that the Cartesian product of two finite sets is finite, without any use + of arithmetic. + + \begin{proof} + TODO + \end{proof} + \end{document}