Partially answer Apostol exercises I 3.12.
Include basic ideas around rational numbers.finite-set-exercises
parent
563217c915
commit
3bc07ffeb5
|
@ -138,8 +138,7 @@ If there exists some `k` satisfying the description in the above `def`, then `Q`
|
|||
is measurable.
|
||||
-/
|
||||
axiom exhaustion_exists_unique_imp_measurable (Q : Set ℝ²)
|
||||
: (∃ k : ℝ, forall_subset_between_step_imp_le_between_area k Q ∧
|
||||
(∀ x : ℝ, forall_subset_between_step_imp_le_between_area x Q → x = k))
|
||||
: (∃! k : ℝ, forall_subset_between_step_imp_le_between_area k Q)
|
||||
→ Q ∈ 𝓜
|
||||
|
||||
/--
|
||||
|
|
|
@ -3,6 +3,14 @@ Exercises I 3.12
|
|||
|
||||
A Set of Axioms for the Real-Number System
|
||||
-/
|
||||
import Mathlib.Algebra.Order.Floor
|
||||
import Mathlib.Data.PNat.Basic
|
||||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.Data.Real.Sqrt
|
||||
import Mathlib.Tactic.LibrarySearch
|
||||
|
||||
import Apostol.Chapter_I_3
|
||||
import Bookshelf.Real.Rational
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 1
|
||||
|
@ -11,7 +19,17 @@ A Set of Axioms for the Real-Number System
|
|||
-- at least one real `z` satisfying `x < z < y`.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x y : ℝ) (h : x < y) : ∃ z, x < z ∧ z < y := by
|
||||
have ⟨z, hz⟩ := exists_pos_add_of_lt' h
|
||||
refine ⟨x + z / 2, ⟨?_, ?_⟩⟩
|
||||
· have hz' : z / 2 > 0 := by
|
||||
have hr := div_lt_div_of_lt (show (0 : ℝ) < 2 by simp) hz.left
|
||||
rwa [zero_div] at hr
|
||||
exact (lt_add_iff_pos_right x).mpr hz'
|
||||
· have hz' : z / 2 < z := div_lt_self hz.left (show 1 < 2 by norm_num)
|
||||
calc x + z / 2
|
||||
_ < x + z := (add_lt_add_iff_left x).mpr hz'
|
||||
_ = y := hz.right
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 2
|
||||
|
@ -20,7 +38,8 @@ A Set of Axioms for the Real-Number System
|
|||
-- such that `m < x < n`.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x : ℝ) : ∃ m n : ℝ, m < x ∧ x < n := by
|
||||
refine ⟨x - 1, ⟨x + 1, ⟨?_, ?_⟩⟩⟩ <;> norm_num
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 3
|
||||
|
@ -28,7 +47,12 @@ A Set of Axioms for the Real-Number System
|
|||
-- If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x : ℝ) (h : x > 0) : ∃ n : ℕ+, 1 / n < x := by
|
||||
have ⟨n, hn⟩ := @Real.exists_pnat_mul_self_geq_of_pos x 1 h
|
||||
refine ⟨n, ?_⟩
|
||||
have hr := mul_lt_mul_of_pos_right hn (show 0 < 1 / ↑↑n by norm_num)
|
||||
conv at hr => arg 2; rw [mul_comm, ← mul_assoc]; simp
|
||||
rwa [one_mul] at hr
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 4
|
||||
|
@ -39,7 +63,13 @@ A Set of Axioms for the Real-Number System
|
|||
-- `⌊5 / 2⌋ = 2`, `⌊-8/3⌋ = -3`.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x : ℝ) : ∃! n : ℤ, n ≤ x ∧ x < n + 1 := by
|
||||
let n := Int.floor x
|
||||
refine ⟨n, ⟨?_, ?_⟩⟩
|
||||
· exact ⟨Int.floor_le x, Int.lt_floor_add_one x⟩
|
||||
· intro y hy
|
||||
rw [← Int.floor_eq_iff] at hy
|
||||
exact Eq.symm hy
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 5
|
||||
|
@ -48,7 +78,19 @@ A Set of Axioms for the Real-Number System
|
|||
-- `n` which satisfies `x ≤ n < x + 1`.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x : ℝ) : ∃! n : ℤ, x ≤ n ∧ n < x + 1 := by
|
||||
let n := Int.ceil x
|
||||
refine ⟨n, ⟨?_, ?_⟩⟩
|
||||
· exact ⟨Int.le_ceil x, Int.ceil_lt_add_one x⟩
|
||||
· simp only
|
||||
intro y hy
|
||||
suffices y - 1 < x ∧ x ≤ y by
|
||||
rw [← Int.ceil_eq_iff] at this
|
||||
exact Eq.symm this
|
||||
apply And.intro
|
||||
· have := (sub_lt_sub_iff_right 1).mpr hy.right
|
||||
rwa [add_sub_cancel] at this
|
||||
· exact hy.left
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 6
|
||||
|
@ -59,7 +101,8 @@ A Set of Axioms for the Real-Number System
|
|||
-- are *dense* in the real-number system.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x y : ℝ) (h : x < y) : ∃ r : ℚ, x < r ∧ r < y := by
|
||||
sorry
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 7
|
||||
|
@ -68,7 +111,25 @@ A Set of Axioms for the Real-Number System
|
|||
-- `xy`, `x / y`, and `y / x` are all irrational.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
||||
: irrational (x + y) := by
|
||||
sorry
|
||||
|
||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
||||
: irrational (x - y) :=
|
||||
sorry
|
||||
|
||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
||||
: irrational (x * y) :=
|
||||
sorry
|
||||
|
||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
||||
: y ≠ 0 → irrational (x / y) :=
|
||||
sorry
|
||||
|
||||
example (x : ℚ) (hx : x ≠ 0) (y : ℝ) (hy : irrational y)
|
||||
: irrational (y / x) :=
|
||||
sorry
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 8
|
||||
|
@ -76,7 +137,10 @@ A Set of Axioms for the Real-Number System
|
|||
-- Is the sum or product of two irrational numbers always irrational?
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
-- No. Here is a counterexample.
|
||||
|
||||
example (hx : x = Real.sqrt 2): irrational x ∧ rational (x * x) := by
|
||||
sorry
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 9
|
||||
|
@ -86,7 +150,8 @@ A Set of Axioms for the Real-Number System
|
|||
-- infinitely many.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example (x y : ℝ) (h : x < y) : ∃ z : ℝ, irrational z ∧ x < z ∧ z < y := by
|
||||
sorry
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 10
|
||||
|
@ -94,17 +159,46 @@ A Set of Axioms for the Real-Number System
|
|||
-- An integer `n` is called *even* if `n = 2m` for some integer `m`, and *odd*
|
||||
-- if `n + 1` is even. Prove the following statements:
|
||||
--
|
||||
-- (a) An integer cannot be both even and odd.
|
||||
-- (b) Every integer is either even or odd.
|
||||
-- (c) The sum or product of two even integers is even. What can you say about
|
||||
-- the sum or product of two odd integers?
|
||||
-- (d) If `n²` is even, so is `n`. If `a² = 2b²`, where `a` and `b` are
|
||||
-- integers, then both `a` and `b` are even.
|
||||
-- (e) Every rational number can be expressed in the form `a / b`, where `a` and
|
||||
-- `b` are integers, at least one of which is odd.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
def is_even (n : ℤ) := ∃ m : ℤ, n = 2 * m
|
||||
|
||||
def is_odd (n : ℤ) := is_even (n + 1)
|
||||
|
||||
-- ----------------------------------------
|
||||
-- (a) An integer cannot be both even and odd.
|
||||
-- ----------------------------------------
|
||||
|
||||
example (n : ℤ) : is_even n = ¬ is_odd n := sorry
|
||||
|
||||
-- ----------------------------------------
|
||||
-- (b) Every integer is either even or odd.
|
||||
-- ----------------------------------------
|
||||
|
||||
example (n : ℤ) : is_even n ∨ is_odd n := sorry
|
||||
|
||||
-- ----------------------------------------
|
||||
-- (c) The sum or product of two even integers is even. What can you say about
|
||||
-- the sum or product of two odd integers?
|
||||
-- ----------------------------------------
|
||||
|
||||
example (m n : ℤ) : is_even m ∧ is_even n → is_even (m * n) := sorry
|
||||
|
||||
example (m n : ℤ) :
|
||||
(∃ m n : ℤ, is_odd m ∧ is_odd n ∧ is_even (m * n)) ∧
|
||||
(∃ m n : ℤ, is_odd m ∧ is_odd n ∧ is_odd (m * n)) :=
|
||||
sorry
|
||||
|
||||
-- ----------------------------------------
|
||||
-- (d) If `n²` is even, so is `n`. If `a² = 2b²`, where `a` and `b` are
|
||||
-- integers, then both `a` and `b` are even.
|
||||
-- ----------------------------------------
|
||||
|
||||
example (n : ℤ) (h : is_even (n ^ 2)) : is_even n := sorry
|
||||
|
||||
example (a b : ℤ) (h : a ^ 2 = 2 * b ^ 2) : is_even a ∧ is_even b := sorry
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 11
|
||||
|
@ -116,16 +210,27 @@ A Set of Axioms for the Real-Number System
|
|||
-- contradiction.]
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
example : ¬ ∃ n : ℝ, rational n → n ^ 2 = 2 := sorry
|
||||
|
||||
-- ========================================
|
||||
-- Exercise 12
|
||||
--
|
||||
-- The Archimedean property of the real-number system was deduced as a
|
||||
-- consequence of the least-upper-bound axiom. Prove that the set of rational
|
||||
-- numbers satisfies the Archimedean property but not he least-upper-bound
|
||||
-- numbers satisfies the Archimedean property but not the least-upper-bound
|
||||
-- property. This shows that the Archimedean property does not imply the
|
||||
-- least-upper-bound axiom.
|
||||
-- ========================================
|
||||
|
||||
-- # TODO
|
||||
/--
|
||||
Shows the set of rational numbers satisfies the Archimedean property.
|
||||
-/
|
||||
theorem exists_pnat_mul_self_geq_of_pos {x y : ℚ}
|
||||
: x > 0 → ∃ n : ℕ+, n * x > y := sorry
|
||||
|
||||
/--
|
||||
Show the Archimedean property does not imply the least-upper-bound axiom.
|
||||
-/
|
||||
example (S : Set ℚ) (hne : S.Nonempty) (hbdd : BddAbove S)
|
||||
: ¬ ∃ x, IsLUB S x :=
|
||||
sorry
|
|
@ -1,5 +1,6 @@
|
|||
import Bookshelf.Real.Basic
|
||||
import Bookshelf.Real.Function
|
||||
import Bookshelf.Real.Geometry
|
||||
import Bookshelf.Real.Rational
|
||||
import Bookshelf.Real.Sequence
|
||||
import Bookshelf.Real.Set
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
import Bookshelf.Real.Basic
|
||||
|
||||
/--
|
||||
Assert that a real number is rational.
|
||||
|
||||
Note this does *not* require the found rational to be in reduced form. Members
|
||||
of `ℚ` expect this (by proving the numerator and denominator are coprime).
|
||||
-/
|
||||
def rational (x : ℝ) := ∃ a : ℤ, ∃ b : ℕ, b ≠ 0 ∧ x = a / b
|
||||
|
||||
/--
|
||||
Assert that a real number is irrational.
|
||||
-/
|
||||
def irrational (x : ℝ) := ¬ rational x
|
Loading…
Reference in New Issue